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ABSTRACT

The purpose of this action research was to evaluate the effect educational robotics 

have on the programming comprehension and motivation of preservice teachers. 

Computer science is increasingly being integrated into K-8 curricula across the country. 

However, there are few teachers trained to teach basic computer science concepts. Core 

subject teachers are being asked to shoulder the load of integrating computer science 

concepts into their instruction. Educational robotics have gained attention for their 

potential to aid users with comprehension and motivation while learning to program. This 

convergent parallel mixed methods research thus investigated (1) the effect of 

educational robotics on preservice teachers’ comprehension of programming concepts, 

and (2) how and to what extent that educational robotics influence preservice teachers' 

motivation related to programming. This study utilized educational robotics to teach 

preservice teachers (N = 18) programming. Data were obtained through a pretest/posttest 

Programming Comprehension Assessment, a pre/post Programming Motivation Survey, 

individual interviews, and field notes. Paired sample t-tests, Wilcoxon signed-ranks tests, 

and inductive analysis were used to analyze the data. Quantitative data exhibited 

significant score increases from pretest to posttest, and significant motivation increases 

from pre-survey to post-survey. Qualitative data revealed five themes; (1) participants 

perceived that a problem-based robotics curriculum improved their intrinsic motivation 

toward programming, (2) participants agreed that knowing programming as a skill had 

advantages as a teacher, (3) participants experienced self-determination towards 
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programming in the face of robotics challenges, (4) participants perceived that the 

gradually increasing level of difficulty in the robotics curriculum improved their self-

efficacy about programming from initially low levels, and (5) participants perceived 

programming as a viable fit in their future classrooms. The findings of this study indicate 

that preservice teachers’ comprehension of programming concepts and motivation related 

to programming can be improved through educational robotics. This research has 

implications for informing preservice teacher educators integrating programming 

concepts into their instruction. Recommendations are provided for programming 

curriculum design. 
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CHAPTER 1 

INTRODUCTION

National Context 

Computer science is being integrated into K-8 curricula at an increasing rate 

nationally (Burke, Schep, & Dalton, 2016; Wilson, Sudol, Stephenson, & Stehlik, 2010). 

However, the number of teachers trained to teach basic computer science concepts from 

kindergarten to 12th grade in America’s public-school system is low (Burke et al., 2016; 

Google Inc. & Gallup Inc., 2016; Mannila et al., 2014; Wilson et al., 2010). The nation’s 

shortage of teachers knowledgeable in computer science concepts is bottlenecking our 

country’s economy and stunting the economic potential of America’s youth (Burke et al., 

2016; Wilson et al., 2010). As of 2018, there are more than half a million unfilled 

computing jobs in the United States (United States Department of Labor, 2018). 

Meanwhile, computer science majors earn the second-highest initial salary among college 

graduates (National Association of Colleges and Employers, 2018). Consequently, 91% 

of parents want their children to learn computer science while even more – 93% – want 

their children’s school to teach computer science (Google Inc. & Gallup Inc., 2016). 

According to a survey by Google Inc. and Gallup Inc. (2016) in which over 12,000 

principals and superintendents were polled, only 40% of elementary principals and 59% 

of middle school principals offered at least one computer science course in their school. 

In the same study, 73% of principals and 71% of superintendents either strongly agreed 
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or agreed that computer science education should be integrated into the core subjects to 

alleviate this problem (Google Inc. & Gallup Inc., 2016). 

Wilson et al. (2010) pointed to two primary reasons why even America’s 

youngest and most tech-savvy teachers do not meet student, parent, and economic 

demands for computer science instruction in the classroom: unpreparedness and 

apprehension. In their report, Wilson et al. (2010) detailed an ominous national climate in 

which “very few pre-service teacher preparation programs have the current capacity or 

coursework developed to prepare computer science teachers” (p. 12). Although few 

preservice education programs around the country prepare teachers to implement 

computer science concepts in their teaching (Wilson et al., 2010), a lack of opportunities 

for preservice teachers to learn effective computer science pedagogy is not the only 

obstacle facing the nation (Israel, Pearson, Tapia, Wherfel, & Reese, 2015). The national 

dearth of teachers with computer science competency is often attributed to a pervasive 

impression of intimidation among teachers vis-a-vis learning and teaching unfamiliar 

computing concepts (Curzon, Cutts, & Bell, 2009; Grover & Pea, 2013; Meerbaum-

Salant, Armoni, & Ben-Ari, 2013). Teachers experience anxiety developing and 

performing instruction on unfamiliar computer topics in front of their classes (Curzon et 

al., 2009; Grover & Pea, 2013). Teachers’ lack of confidence parallels with low self-

efficacy and motivation (Sandholtz & Ringstaff, 2014) and negatively impacts teachers’ 

effectiveness (Babaei & Abednia, 2016; Kreijns, Van Acker, Marjan, & Van Buuren, 

2013; Bandura, 1997; Paraskeva, Bouta, & Papagianni, 2008). Thus, Israel et al. (2015) 

noted that teachers of younger students might erroneously feel that computer science can 

only be taught through high-level computer programming languages like C++ or Java. 
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Due to the intimidating reputation of computer science, teachers may be less likely to 

implement any programming instruction in younger students’ courses at all, denying 

students the chance to develop their knowledge of programming languages and computer 

science (Israel et al., 2015). 

With America’s lack of a formal plan for training teachers in computer science 

(Burke et al., 2016; Google Inc. & Gallup Inc., 2016), researchers have suggested 

remedies to make learning programming less intimidating (Sengupta, Kinnebrew, Basu, 

Biswas, & Clark, 2013; Fessakis, Gouli, & Mavroudi, 2013; Good, 2011). A study by 

Sengupta et al. (2013) showed that in-service teachers who initially demonstrated 

apprehension about learning computer programming found basic block-based 

programming languages to be valuable. Other studies have shown that teachers’ positive 

self-efficacy on technology concepts correlates to improved instructional practices with 

technology (Ertmer & Ottenbreit-Leftwich, 2010; Ertmer, Ottenbreit-Leftwich, Sadik, 

Sendurur, & Sendurur, 2012). According to Good (2011), less difficult block-based 

programming languages designed to “lower the computational floor” (p. 18) can be used 

to build novice programmers’ motivation and self-efficacy with programming (Fessakis 

et al., 2013). Therefore, block-based programming languages can be leveraged to cut 

through preservice teachers’ initial apprehension of computer science concepts before 

they enter the field, thus cultivating teachers that are more competent with computer 

science. 

Papert (1980) published the seminal research on programming instruction with his 

Logo programming language and on-screen turtle drawing activities. Since then, the 

pairing of basic programming languages and robotics have become more prominent in 
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America’s schools, with the toy brick company Lego advancing to the forefront of public 

prominence (Martin, Mikhak, Resnick, Silverman, & Berb, 2000; Martin et al., 2011; 

Martin & Resnick, 1993). Dodds, Greenwald, Howard, Tejada, and Weinberg (2006) 

reported that “A key advantage of the most popular platforms,” such as Lego, “is the 

variety of ways in which students can program them” (p. 12). Thus, robotics kits flip 

students’ typical experience of learning how to operate technologies into learning how to 

create technologies (Burke & Kafai, 2014; Casler-Failing, 2017). Numerous studies have 

demonstrated that students as young as four can construct robots from kits and program 

the robots to perform simple tasks (Bers, 2008; Bers, Ponte, Juelich, Viera, & Schenker, 

2002; Cejka, Rogers, & Portsmore, 2006; Kazakoff, Sullivan, & Bers, 2013; Strawhacker 

& Bers, 2015) while studies on preservice teachers have suggested positive results related 

to robotics, programming comprehension, and motivation (Jaipal-Jamani & Angeli, 2017; 

Kim et al., 2015; Kucuk & Sisman, 2018; Ortiz, Bos, & Smith, 2015). It can be inferred 

from these noteworthy studies that educational robotics can provide a promising method 

for both teaching programming and motivating preservice teachers to use programming. 

Local Context 

South Carolina released its K-8 Computer Science and Digital Literacy Standards 

in May of 2017 (South Carolina Department of Education, 2017). A survey of 158 K-12 

South Carolina teachers by Burke et al. (2016) reported that the primary obstacles of 

teaching computer science in the state are a lack of time and dedicated computer science 

courses. With few schools offering dedicated computer science courses for K-8 students, 

non-computer science teachers have been asked to integrate computer science teaching 

into other subjects (Burke et al., 2016; Google Inc. & Gallup Inc., 2016). Thus, 
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preservice teachers must be prepared to integrate content from The South Carolina 

Department of Education’s (2017) K-8 Computer Science and Digital Literacy Standards 

such as “Standard 4: Develop a program to express an idea or address a problem” and 

“5.AP.4.1. Use a visual language to design and test a program that solves a simple task” 

(p. 23-32). The Running on Empty report (Wilson et al., 2010) implored federal, state, 

and local governments to “Create pre-service and professional development opportunities 

for computer science teachers” and “Expand professional development opportunities and 

recruit new computer science teachers” (p. 10). To date, however, South Carolina’s 

Department of Education has not advanced formal guidelines for colleges to integrate 

these computer science standards into current preservice teacher education programs.  

The South Carolina K-8 Computer Science and Digital Literacy Standards (South 

Carolina Department of Education, 2017) are currently being integrated into an 

undergraduate educational technology class at the university where this study takes place. 

I implemented a programming unit of instruction that utilized educational robotics. The 

aim of this unit was to both prepare K-8 preservice teachers to integrate programming 

into their instruction and motivate them to use programming through creative educational 

robotics programming activities. 

Statement of the Problem 

New K-8 Computer Science and Digital Literacy Standards have been introduced 

in the state of South Carolina (South Carolina Department of Education, 2017). With few 

K-8 schools offering stand-alone computer science courses, principals are relying upon 

teachers of other subjects to integrate computer science concepts into their classes (Burke 

et al., 2016; Google Inc. & Gallup Inc., 2016). Therefore, K-8 preservice teachers of non-
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computer science subjects must be prepared and motivated to integrate content from the 

South Carolina Department of Education’s (2017) standards such as “develop a program 

to express an idea or address a problem” and “use a visual language to design and test a 

program that solves a simple task” into their instruction (p. 23-32). However, studies 

have shown that teachers can experience difficulties with traditional abstract methods of 

learning programming (Bower et al., 2017; Grover & Pea, 2013; Israel et al., 2015; Ortiz 

et al., 2015; Resnick et al., 2009). For these reasons, teachers need to be able to both 

comprehend programming concepts and be motivated to use and teach programming. 

Purpose Statement 

 The purpose of this action research was to evaluate the effect educational robotics 

have on programming comprehension and motivation of preservice teachers at a medium-

sized liberal arts university in the southeastern United States. 

Research Questions 

1. What is the effect of educational robotics on preservice teachers’ comprehension 

of programming concepts? 

2. How and to what extent does educational robotics influence preservice teachers’ 

motivation related to programming? 

Researcher Subjectivities & Positionality 

Peshkin (1988) explained that a researcher’s subjectivities “have the capacity to 

filter, skew, shape, block, transform, construe, and misconstrue what transpires from the 

outset of a research project to its culmination in a written statement” (p. 17). By outlining 

my positionality and subjectivities before delving into my research, I can assess the 

assumptions I have about my participants and what perceptions I believe my participants 



www.manaraa.com

7 

will have about me. From this reflection, I can understand how subjectivity and 

positionality principles influence this study. 

I am a lecturer and instructional technology specialist within the research location. 

I have experience with educational technology as a former K-12 public-school student 

and later, as a high school teacher and college instructor. While a student, I was 

motivated by using technology for as many projects as I could, creating podcasts, 

educational videos, and other technology-focused projects. During graduate school, I 

worked as a web developer and graphic designer. As a teacher at a STEM high school, I 

found it rewarding to integrate my students’ interests in engineering and computer 

science with social studies class content by including programming and 3D modeling 

assignments. Currently, I have experience with educational technology as a doctoral 

student, college instructor, and instructional technology specialist. I have also co-directed 

a grant that taught middle school and high school science and math teachers in a low 

socioeconomic school system on how to integrate programming and robotics concepts 

into their instruction. From these experiences, I have solidified the belief that educational 

technology is an integral part of K-12 and college education. In my judgment, to fully 

prepare our students for the future economy, computer science concepts must be 

integrated into school curricula at the earliest opportunity.  

An adage states that you are not who you are, nor are you who you think you are. 

You are, in fact, who you think others think you are. Action research is a collaboration 

between the researcher and participants (Creswell, 2014; Mertler, 2017). The researcher 

and the participants work closely together; therefore, it is paramount to understand 
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participants’ perceptions of the researcher in order to see the study with a more authentic 

view. 

My positionality in this study is best described by Dwyer and Buckle (2009) as 

that of an “insider-outsider” from “the space between” (p. 60). I perceive my participants 

to mainly assign my status to be that of an insider, which Dwyer and Buckle (2009) 

explained as “sharing the characteristic, role, or experience under study with the 

participants” (p. 55). As a former education major and teacher, I share my participants’ 

background, life calling, and ideology. As an alumnus of this study’s research location, I 

share many of the same experiences as my participants both inside and outside of school. 

As a university lecturer who teaches my participants every day, I am an insider with them 

through our shared experience of my class. I come from a middle-class family, as many 

of my students do. Although I may not share the exact same experiences as all my 

students, I feel as though I come from a background similar enough to empathize and 

relate. However, I realize that my participants may ascribe my status to be that of an 

outsider because I hold grading power over them. In addition, I am much older than they 

are, and I am not currently an undergraduate student sitting with them in class. Due to my 

shared background with my students as an insider and my outsider power position within 

the study, I cannot be one or the other (Dwyer & Buckle, 2009). Instead, I am a hybrid 

insider-outsider. 

Being an insider-outsider for my study is a double-edged sword. Dwyer and 

Buckle (2009) noted that insiders enjoy quick and more open acceptance into the 

participant population than do outsiders. I identify with my participants’ day-to-day lived 

experiences, and my participants may ascribe more trust to me than to an outsider. They 
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may be more open and truthful with their responses, especially in the case of my 

individual interview qualitative data collection. On the negative side, as an insider, I may 

be inherently biased due to not being removed from the participant population (Dwyer & 

Buckle, 2009; Merriam et al., 2001). As Merriam et al. (2001) noted, as a partial insider I 

may not be “curious enough to raise provocative questions” (p. 411). Therefore, I must be 

conscientious about removing myself as much as necessary from my participants’ 

standpoint and ask tough questions to exercise the perspective more commonly 

associated with an outsider. 

As the researcher, I must establish how my interpretations are influenced by my 

personal value system (Mertens, 2009). My personal paradigm aligns with the pragmatist 

standpoint. As Hathcoat and Meixner (2015) have described, I will utilize a “plurality of 

methods to address valued aims of inquiry” in my study (p. 435). From my pragmatist 

view, my relationship with my participants will impact the results of my research. 

Corresponding to my insider-outsider role, pragmatists choose an appropriate depth of 

relationship with their participants relevant to the goals of the research (Mertens, 2009). 

Ontologically, my study will utilize the multiple viewpoints of my participants in 

quantitative and qualitative metrics to thoroughly understand the problem and present 

subsequent solutions (Frels & Onquegbuzie, 2013). To curtail my power influence over 

the participants, I will position myself within the action research study and classroom as 

an insider-outsider collaborator. I aim to present myself as a helpful scaffold for student 

learning as opposed to the traditional powerful teacher role in order to cultivate trust 

(Herr & Anderson, 2005). Considering my participants’ diverse viewpoints, I must 

appropriately separate myself from my deep-seated beliefs that computer science 
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concepts are relevant to K-8 students and can be creatively linked to most subject areas 

by teachers. I must take the stance closer to a participant wherein my life experience with 

educational technology and computer science has not yet crystallized in order to respect 

and value my participants’ perceptions. 

Definition of Terms 

Block-based Programming 

This study utilized Weintrop’s (2016) definition to operationalize the term block-

based programming. Weintrop’s (2016) definition explains that block-based 

programming languages “leverage a programming-primitive-as-puzzle-piece metaphor” 

through on-screen programming environments in which users engage the language by 

“dragging blocks into a canvas and snapping them together to form scripts” to write an 

executable computer program (p. 58).  

Career Motivation 

 This study used Arwood’s (2004) characterization of career motivation. Arwood 

(2004) describes that career motivation is exhibited when learners understand the subject 

being learned as relevant to their future careers. 

Educational Robotics 

Educational robotics is a term used to identify versions of robotics designed for 

teaching or learning. Ortiz et al. (2015) provided the definition of educational robotics 

which will guide this study: “Educational robotics is a specific application of K–12 

engineering education and offers students physical manipulatives that are familiar and 

easy to work with as they participate in the engineering design process” (p. 43).  
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Educational Robotics Practices 

This study used Catlin’s (2012) definition to operationalize educational robotics 

practices. Catlin (2012) characterizes educational robotics practices as an instructional 

strategy that uses educational robotics for instructional purposes. 

Intrinsic Motivation 

 Intrinsic motivation was operationalized by Ryan and Deci’s (2000) description of 

the term. Ryan and Deci (2000) define intrinsic motivation as a learner’s desire to learn 

about a topic due to their inherent interest and “innate psychological needs for 

competence and autonomy” with the topic (p. 65). 

Motivation 

This study utilized Pintrich and Schunk’s (1996) definition of motivation. Pintrich 

and Schunk (1996) operationalize the term motivation as “the process whereby goal-

directed activity is instigated and sustained” (p. 4).  

Motivation to Integrate Programming into Teaching 

 Motivation to Integrate Programming into Teaching (MTIPIT) was defined based 

on research on teacher motivation and its combination of intrinsic, extrinsic, and altruistic 

factors (Brookhart & Freeman, 1992; Han & Yin, 2016; Sinclair, 2008). This study 

operationalized the term based on Han and Yin’s (2016) characterization of teacher 

motivation. In this study, MTIPIT is defined as the reasons an individual chooses to use 

and teach programming based on intrinsic and contextual factors. 
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Programming 

Ceruzzi’s (1998) definition of computer programming was used to operationalize the 

term programming in this study. Computer programming is the process of designing and 

creating instructions for computers to perform specific tasks (Ceruzzi, 1998).  

Programming Comprehension 

Ala-Mutka’s (2004) definition of programming comprehension best aligns with 

the goals and instruments utilized in this study and will be used to operationalize the term 

programming comprehension. Ala-Mutka (2004) describes programming comprehension 

as the “ability to track code to build a mental model of the program and predict its 

behavior” (p. 5).  

Robots 

The robots used in this context are Lego EV3 educational robots running the 

EV3-G programming language that are developmentally appropriate for the K-8 learners 

that preservice teachers who participate in the study will have in the classroom (Martin et 

al., 2000; Martin et al., 2011; Martin & Resnick, 1993). The EV3 educational robotics 

kits are part of a Lego universe that “extends the traditional Lego bricks with a central 

control unit (the RCX), as well as motors and various kinds of sensors” (Koller & Kruijff, 

2004, p. 1). 

Self-determination 

 In this study, self-determination will be operationalized by Black and Deci’s 

(2000) definition of the term. Black and Deci (2000) define self-determination as the 

control learners have over their learning. 
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Self-efficacy  

 Bandura’s (1997) research on self-efficacy will be used in this study. Self-efficacy 

is defined in this study as learners’ confidence in their ability to achieve the learning task 

(Bandura, 1997).
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CHAPTER 2 

LITERATURE REVIEW

The purpose of this action research was to evaluate the effects educational 

robotics have on programming comprehension and motivation of preservice teachers at a 

medium-sized liberal arts university in the southeastern United States. This review of 

literature addresses two research questions. The research questions in this study are (1) 

what is the effect of educational robotics on preservice teachers’ comprehension of 

programming concepts? and (2) how and to what extent does educational robotics 

influence preservice teachers' motivation related to programming? 

 In order to form a comprehensive foundation of knowledge on the topics of 

programming and educational robotics as they pertain to teacher education, four main 

paths of inquiry were formed to guide my literature search: (1) programming in K-12 

education, (2) programming in teacher education, (3) educational robotics in K-12 

teaching, and (4) educational robotics in teacher education. The search terms for each of 

these four paths of inquiry were varied, and database filters were utilized to identify full-

text, peer-reviewed articles from academic journals that represented the most relevant and 

rigorous literature. The ERIC database was my most-used tool to identify pertinent 

articles for this literature review. A small amount of pertinent literature was found 

through searches on Education Source and Google Scholar that did not appear in the 

ERIC database. I also accessed ProQuest Dissertations and Theses to identify 

dissertations related to my research. Ancestral searches through the references of 
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germane literature were used to strengthen the foundation of this literature review. 

Google Scholar and ResearchGate were used to access many of these ancestral studies 

not found on the educational research databases. 

 This resulting literature review is organized into four key sections, including (1) 

programming, (2) educational robotics, (3) impact of educational robotics on 

programming comprehension, and (4) impact of educational robotics on motivation 

related to programming. The first section overviews the literature on programming to 

provide the reader with a foundational understanding of programming and how it fits into 

education. The next section explains the use of educational robotics as learning tools for 

novices being introduced to programming. The final sections offer syntheses of studies 

involving programming and educational robotics. Special attention is paid to teacher 

education and what these studies found in relation to the impacts of educational robotics 

on programming comprehension and motivation.  

Programming 

Programming is a major construct identified in this study’s research questions. In 

this section, programming and its associated aspects will first be defined. Next, block-

based programming languages and the ways in which learners interact with such 

programming languages will be explained. Then, programming’s context in education 

will be detailed. Finally, studies that uncovered difficulties experienced by in-service and 

preservice teachers while learning to program will be shared. These details on 

programming will provide readers with a foundational understanding of the central 

construct being evaluated in this study. 
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Defining Programming 

Programming is a main construct in this study. At its root, Böhm and Jacopini  

(1966) have explained that programming “is where flow diagrams are introduced with 

different purposes and defined in connection with the descriptions of algorithms or 

programs” (p. 366). Ceruzzi, (1998), defined computer programming more broadly as the 

process of designing and creating instructions for computers to perform specific tasks, 

known as programs. Programs have also been described by Dijkstra (1976) as 

“algorithms intended for automatic execution on computers” (p. 8). Programs are created 

with programming notation techniques, commonly referred to as programming languages 

(Dijkstra, 1976). Programming includes processes of computational thinking, and 

misconceptions discussed in the literature note that teachers and students believe the two 

to be the same (Lu & Fletcher, 2009; Qualls & Sherrell, 2010). Yamazaki, Sakamoto, 

Honda, Washizaki, and Fukazawa (2015) proposes that “computational thinking is a 

common concept to various programming languages” (p. 157). Various definitions of 

computational thinking include aspects about how its processes are fundamental to 

programming, including problem-solving, concurrency, sequences, variable 

representation, loops, conditionals, calculation, and abstraction (Kafai & Burke, 2014; 

Sengupta et al., 2013; Yamasaki et al., 2015). Computational thinking has been described 

by Yadav, Good, Voogt, and Fisser (2017) as “decomposing problems, using algorithms 

to solve problems, and abstracting and automating the problem-solving approach” (p. 

1051). 
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Block-based Programming 

In this section, research detailing block-based programming’s functions will be 

presented. This section will include descriptions of how users write programs in block-

based programming. Then, the educational advantages of block-based programming 

exhibited in the literature will be described.  

Writing block-based programs. There are educational versions of programming 

languages that offer varying scaffolds to novice programmers while they learn to write 

programs (Sáez-López, Román-González, & Vázquez-Cano, 2016; Weintrop, 2016; 

Weintrop & Wilensky, 2017). Block-based programming is a subset of programming 

languages that are part of the visual programming language family (Weintrop, 2016). 

Visual programming differs from more traditional text-based programming because 

visual programming allows learners to create programs in a multidimensional 

programming environment (Myers, 1990). Weintrop (2016) described block-based 

programming languages as those which “leverage a programming-primitive-as-puzzle-

piece metaphor” through on-screen programming environments in which users engage 

the language by “dragging blocks into a canvas and snapping them together to form 

scripts” in order to write an executable computer program (p. 58). As shown in Figure 

2.1, students assemble programs by dragging and dropping pictorial representations of 

programming commands in block-based environments (Sáez-López et al., 2016; 

Weintrop, 2016; Weintrop & Wilensky, 2017). Such blocks represent text-based 

programming staples like Boolean phrases, conditions, loops, and variables, among other   
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Figure 2.1. Differences between text-based and block-based programming languages. 

 

functions (Meerbaum et al., 2013; Weintrop, 2016). Scratch (e.g., Malan & Leitner, 2007; 

Meerbaum-Salant et al., 2013; Resnick et al., 2009), and Alice (e.g., Cooper, Dann, & 

Pausch, 2000; Kelleher, Pausch, & Kiesler, 2007; Meerbaum-Salant et al., 2013; Werner,  

Campe, & Denner, 2012) are two examples of block-based programming environments 

which have been widely studied in education and are categorized in a group known as 

structured editors (Donzeau-Gouge, Huet, Lang, & Kahn, 1984). Due to the unique 

language and editing environment characteristics described above, block-based 

programming languages are often used to introduce novices to programming. 

Advantages of block-based programming. Different modalities have been 

indicated to make learning easier for different learners (Antle, 2007; Manches & Price, 

2011; Scaife & Rogers, 2005; Weintrop & Wilensky, 2017). Common text-based 

programming languages have been reported to be challenging to learn because of the 

specific grammar and syntax requirements for each command (Alkaria & Alhassan, 2017; 

Falloon, 2016; Wilson & Moffat, 2010). Block-based programming languages remove 

the frustrating syntax and related errors likely to be encountered by novice programmers 

because the blocks have the grammar essential to programming languages built-in 

(Alkaria & Alhassan, 2017; Weintrop & Wilensky, 2015). With block-based 

programming environments, blocks of programming commands can only be connected if 
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the sequences make sense and are functional (Alkaria & Alhassan, 2017; Falloon, 2016; 

Kim, Yuan, Vasconcelos, Shin, & Hill, 2018; Weintrop & Wilensky, 2015; Wilson & 

Moffat, 2010). Weintrop (2016) succinctly explained that “If two blocks cannot be joined 

to form a valid syntactic statement, the environment prevents them from snapping 

together, thus preventing syntax errors but retaining the practice of assembling programs” 

(p. 59). As blocks cannot be snapped together unless they work as chunks of commands, 

novice programmers can modify their program and correct their mistakes before running 

the program unsuccessfully. 

With text-based programming’s typical obstacles removed, block-based 

programming can help learners explore abstract computer science concepts sooner in 

their educational progression than learners using text-based programming languages 

(Bers, Flannery, Kazakoff, & Sullivan, 2014; Kim et al., 2018; Lye & Koh, 2014). In 

text-based programming languages, novices must master the grammar of programming 

before moving on to Boolean phrases, loops, variables, and more complex concepts 

(Malan & Leitner, 2007; Wilson & Moffat, 2010). Studies have indicated that novices – 

both children (Howe, 1981; Levin & Kareev, 1980; Papert, Watt, diSessa, & Weir, 1979; 

Pea, 1983) and adults (Bonar & Soloway, 1982) – can be expected to learn to write only 

basic text-based programs which are grammatically correct. Although novices of all ages 

can be expected to write simple but grammatically correct programs (Bonar & Soloway, 

1982; Howe, 1981; Pea, 1983), such programs are basic and do not necessarily represent 

comprehension of programming, only knowledge of the grammatical arranging of 

commands (Pea & Kurland, 1984). Research has suggested that block-based 

programming, on the other hand, is designed to accelerate novice programmers past the 
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time-consuming and often frustrating grammar and syntax of learning text-based 

programming languages, allowing them more time to learn and experiment with higher-

order programming concepts (Malan & Leitner, 2007; Wilson & Moffat, 2010). Malan 

and Leitner (2007) noted that a block-based programming language should be the first 

programming language learned by college-level novice programmers because block-

based programming allows learners “not only to master programmatic constructs before 

syntax but also to focus on problems of logic before syntax” (p. 1). Instead of focusing on 

the minutia of text-based programming grammar and syntax, learners of block-based 

programming can focus on more complex thinking skills – like problem-solving – earlier, 

therefore creating more functionally full-bodied programs (Malan & Leitner, 2007; 

Wilson & Moffat, 2010). For these reasons, block-based programming has numerous 

instructional advantages over text-based programming languages when teaching novices. 

Programming in Education 

This section provides the underpinnings for why programming is the central 

construct in this study. Then, a brief overview of research on programming in K-12 

education will be shared in order to provide the context for how programming appears in 

schools and why teachers are being prepared to integrate it into their instruction. Finally, 

how block-based programming is being used in undergraduate and teacher education will 

be presented to explain how teachers are experiencing block-based programming. 

Programming in K-12 education. The genesis of programming in K-12 

education dates back to Papert’s programming language, Logo, with which students 

programmed an on-screen turtle to draw shapes (Abelson & DiSessa, 1986; Feurzeig, 

Papert, Bloom, Grant, & Soloman, 1969; Resnick, 2007; Resnick, Ocko, & Papert, 1988). 
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Logo’s approach to programming sparked the development of block-based programming 

languages such as Scratch and Alice that are commonly used today (Falloon, 2016; 

Mikropoulos & Bellou, 2013; Resnick, 2007; Weintrop, 2016). Due to its success as a 

teaching tool, block-based programming is widely being introduced in elementary and 

middle school classes (Werner et al., 2012; Resnick et al., 2009).  

Research has shown block-based programming to have positive effects on the 

core subjects (Burke, 2012; Fessakis et al., 2013; Moreno-Leon & Robles, 2015; Sáez-

López et al., 2016; Sengupta et al., 2013). In science classrooms, research has shown 

significant gains in student understanding of kinematics and ecology (Sengupta et al., 

2013) and the development of enthusiasm and commitment to computer science in sixth 

grade (Sáez-López et al., 2016). Research into block-based programming’s effect on 

math skills indicated that students developed their problem-solving and mathematical 

understanding (Fessakis et al., 2013). Moreno-Leon and Robles (2015) even contended 

that a math class is the best fit for programming instruction among the general subject 

areas. In English, block-based programming has been used to teach literacy through 

digital storytelling (Burke, 2012), and research indicated that there are motivational 

effects of integrating programming into English instruction (Sáez-López et al., 2016). 

Such findings undergird principals’ and superintendents’ views that computer science 

should be integrated into the core subjects (Google Inc. & Gallup Inc., 2016).   

Programing in post-secondary education. Block-based programming is being 

used not only to introduce young novices to programming, but adult learners as well 

(Alkaria & Alhassan, 2017; Malan & Leitner, 2007; Wilson & Moffat, 2010). According 

to a study by Malan and Leitner (2007), block-based programming has been used to 
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introduce computer science class students at Harvard to programming. In this study, 

block-based programming instruction motivated Harvard students to learn to program and 

familiarized them with important computer science concepts that would transfer over to 

Java, a more grammar and syntax-heavy text-based programming language. Similarly, 

studies specific to in-service teachers (Alkaria & Alhassan, 2017; Wilson & Moffat, 

2010) indicated that participants’ attitudes toward teaching computer science concepts 

increased as a result of block-based programming professional development. 

Furthermore, preservice teachers’ attitudes and motivation to integrate computer science 

concepts into their teaching improved as a result of block-based programming instruction 

(Yadav, Zhou, Hambrusch, & Korb, 2014; Yadav, Zhou, Mayfield, Hambrusch, & Korb, 

2011). These studies represent the crux of educational research on adult learners being 

introduced to programming through block-based languages. 

Teachers’ Difficulties in Learning Programming 

Various researchers have pointed out that studies on programming in education 

historically have heavily focused upon students, not teachers (Barr & Stephenson, 2011; 

Grover & Pea, 2013; Yadav et al., 2011). Other researchers have critiqued the small 

amount of literature on programming relating to comprehensively examining the 

difficulties experienced by preservice or in-service teachers while learning programming 

(Bower et al., 2017; Yadav et al., 2011). Most recently, Kucuk and Sisman (2018) 

emphasized that there continues to be a limited effort by researchers to study the 

experiences of preservice teachers learning to program. With the reality of the current 

state of the available literature related to preservice teachers’ difficulties learning to 

program in mind, research on in-service teachers – the population preservice teachers will 
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become upon entering the workforce – will be presented along with the small amount of 

research on the difficulties experienced by preservice teachers. Through this method, a 

comprehensive explanation of the literature available on in-service teachers, in addition 

to preservice teachers, will paint a more informed picture of difficulties these linked 

populations face while learning to program.  

In-service teachers’ challenges. Research has shown that in-service teachers can 

experience difficulties as technology advances and computer concepts become a more 

substantial part of the K-12 curriculum (Bower et al., 2017; Grover & Pea, 2013; Israel et 

al., 2015; Resnick et al., 2009). First, research suggests that teachers have difficulties 

adapting their teaching to teach computer concepts because they are not comfortable 

using and developing lessons around new technologies (Curzon et al., 2009; Meerbaum-

Salant et al; Schanzer, 2015). Exacerbating this problem, teachers have misconceptions 

about computer science, which repel them from learning and then teaching computer 

science concepts like programming in classrooms (Bower et al., 2017; Milton, Rohl, & 

House, 2007). Teachers lack confidence in teaching computer science topics because they 

are often not computer science majors and therefore do not feel credentialed enough to 

teach the subject in their classrooms (Bender, Schaper, Caspersen, Margaritis, & 

Hubwieser, 2016; Israel et al., 2015). In fact, Bower et al. (2017) reported that 78% of 

teacher participants (N =  69) had a low level of self-confidence about teaching 

computational thinking in their classrooms after taking part in full-day learning activities 

on basic computer science topics such as dissecting problems, recognizing patterns, 

abstraction, and algorithms. Most significantly, teachers report a lack of confidence 

teaching computer science content due to their views of the perceived level of difficulty 
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and abstractness attributed to the subject (Bower et al., 2017; Grover & Pea, 2013; Israel 

et al., 2015; Resnick et al., 2009). These are all reasons in-service teachers have 

difficulties with learning programming, which can inhibit them from integrating 

programming into their instruction. 

Preservice teachers’ challenges. There is emerging research on preservice 

teachers being trained to use programming in teacher preparation classes. For example, 

research reported that preservice teachers experienced issues with programming concepts 

like identifying variables, defining conditions, and identifying errors (Kim et al., 2015, 

2018). A study by Ortiz et al. (2015) noted that 12% of preservice teacher participants did 

not feel prepared to integrate this type of instruction into their teaching after going 

through training. This population of preservice teachers echoed the sense of feeling 

intimidated by the abstract math concepts required to teach programming (Ortiz et al., 

2015). These studies imply that preservice teachers, like in-service teachers, experience 

difficulties with programming concepts.  

Educational Robotics 

Educational robotics are an important tool in programming education. This 

section will overview educational robotics, a main construct in the research questions of 

this dissertation. This section is broken into four parts. First, how studies characterize key 

educational robotics terms will be explained. Next, how educational robotics are used and 

how educational robotics relate to block-based programming will be described. Then, 

theoretical frameworks for educational robotics practices that are found in the literature 

will then be shared. To conclude, difficulties experienced by teachers using educational 
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robotics will be disclosed. The four elements in this section are designed to provide 

readers with a summary of literature on educational robotics in education. 

Defining Educational Robotics 

Educational robotics was defined by Eguchi (2012) broadly as ‘‘the use of 

robotics as a learning tool’’ (p. 3). Ortiz et al. (2015) provided a more specific definition 

of educational robotics, or “a specific application of K–12 engineering education and 

offers students physical manipulatives that are familiar and easy to work with as they 

participate in the engineering design process” (p. 43). Catlin (2012) characterized 

educational robotics practices as instructional strategies that use robotics for instructional 

purposes. These examples provide a general characterization of educational robotics. 

Educational Robotics for Teaching and Learning 

Having a frame of reference for how educational robotics have been used for 

teaching and learning is essential background information for understanding educational 

robotics practices. This section has two focuses. This section will describe (1) how block-

based programming and educational robotics are combined, and (2) the advantages of 

implementing educational robotics practices for programming education that are found in 

the literature. 

Pairing programming with educational robotics. The genesis of educational 

robotics started with Papert’s Logo programming language (Alimisis et al., 2007; Casler-

Failing, 2017). Logo’s turtle concept inspired Perlman’s (1974) TORTIS programming, 

which, for the first time, included educational manipulatives that could be programmed. 

Resnick et al. (1988) later paired Lego gears, motors, and sensors with a computer 

running the Logo programming software. Today, there are numerous types of educational 
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robotics kits available to educators, many which pair robotics pieces with block-based 

programming environments like Lego Mindstorms robots and Lego EV3-G programming 

language, or mBlock robots and Scratch programming language (Dodds et al., 2006; 

Gunbatar & Karalar, 2018; Weintrop, 2016). With the growing popularity of 

programming initiatives in schools, the use of educational robotics as a programming 

vessel is becoming widespread in education (Dodds et al., 2006; Rogers, Wendell, & 

Foster, 2010). 

Students or instructors can build educational robots to accomplish specific tasks. 

For example, sensors or lifting devices may be built onto the chassis of the manipulative 

in order to navigate through an obstacle course and pick up an object (Bers et al., 2002; 

Martin et al., 2011; McNally, Goldweber, Fagin, & Klassner, 2006). Educational robots 

can run based on commands written in block-based programming languages (Alimisis et 

al., 2007; Petre & Price, 2004). Programming for the educational robotics can be 

composed on computers or mobile devices in a block-based programming environment 

and uploaded to the controller unit of each robot either wirelessly by Bluetooth or 

physically by USB connection (McGill, 2012; Petre & Price, 2004).  

Dagdilelis, Sartatzemi, and Kagani (2005) and Staszowski and Bers (2005) 

offered similar outlines for pairing block-based programming with educational robotics 

activities in the classroom. Since both block-based programming and educational robots 

can be constructed, deconstructed, and modified, students can design both their robots 

and the programs running on the robots to accomplish different tasks (Dagdileliset al.; 

2005; Staszowski & Bers, 2005). Dagdilelis et al. (2005) outlined a more technical and 

action-oriented structure of (1) constructing a robot, (2) writing a program using a visual 
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programming language, (3) transmitting that program to the educational robot, and (4) 

running the program. Dagdilelis et al. (2005) noted that steps two and four are often 

repeated many times as students solve problems and modify their educational robotics 

designs and programs. Staszowski and Bers’ (2005) listed five major occurrences that 

happen while students are engaged in activities that combine programming and 

educational robotics: (1) design, (2) building, (3) building concepts, (4) programming, (5) 

programming concepts. These occurrences take more of a big picture view of the process 

and note mental exercises of building concepts and programming concepts. Dagdilelis et 

al. (2005) and Staszowski and Bers (2005) include the commonalities of building a robot 

to perform a certain task and then programming a robot to execute the required 

commands.  

Advantages of educational robotics. There are numerous benefits of educational 

robotics, which have been noted in the literature. For example, Huang, Yang, and Cheng 

(2013) studied the impact of using educational robotics on programming achievement. 

Their findings indicated that students who learned programming through educational 

robotics demonstrated higher programming achievement than those who learned 

programming through flowcharts. Educational robotics can be considered as 

manipulatives for learning to program in the style of Montessori (Brosterman, 1997). 

While Montessorian manipulatives were designed to help students better understand 

numbers, educational robotics help students understand abstract science, math, and 

computer science lesson content (Bers, 2010; Bers et al., 2002; Bers & Portsmore, 2005; 

Brosterman, 1997). For example, educational robotics enhance the traditional 

programming learning experience by breaking down the barrier between the computer 
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screen where block-based programs live and the real, physical world where these 

intangible programs can be acted out physically (Mikropoulos & Bellou, 2013). Real-

world application allows students to make connections between the content being studied 

and how the content is used outside of the classroom (Adams, Miller, Saul, & Pegg, 

2014). Since educational robotics can be used to reduce the level of abstractness of 

science and mathematics concepts (Nugent, Barker, Grandgenett, & Adamchuk, 2010), 

educational robotics has been demonstrated to be effective in the teaching of STEM 

concepts (Altin & Pedaste, 2013; Barker, Nugent, & Grandgenett, 2014). Students can 

actively learn in a student-centered approach by physically interacting with gears, motors, 

and sensors, among other aspects, through the construction of their own robots (Bers, 

2008; Wang & Ching, 2003). As synthesized in Table 2.1, fine motor skills, STEM 

knowledge, physics knowledge, mathematics skills, and programming understanding 

have improved in participants as outcomes of educational robotics practices in the 

classroom. Successful outcomes relating to the use of educational robotics like those 

highlighted in this paragraph have led to educational robotics’ emerging popularity in 

schools and the field of education. 

 

Table 2.1. Significant Educational Robotics Findings in K-12 Education 

 
Study Population Significant Findings 

Bers et al. (2014) 

 

Kindergarten Participants were interested and could learn many 

of the robotics and programming concepts in the 

curriculum. 

Educational robotics develop students’ fine motor 

skills. 

 

Lindh & 

Holgersson (2007) 

Elementary 

and middle 

school 

Educational robotics improved elementary and 

middle school students’ math performance and 

STEM knowledge. 
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Table 2.1. Significant Educational Robotics Findings in K-12 Education Continued. 

 
Study Population Significant Findings 

Mikropoulos & 

Bellou (2013) 

Elementary 

and middle 

school 

Educational robotics can be used to aid students 

in developing physics knowledge through 

constructionist robotics activities. 

Karahoca, 

Karahoca, & 

Uzunboylub, 

(2011) 

 

Elementary 

and middle 

school 

Improvement demonstrated in students’ self-

confidence and mathematics learning. 

Casler-Failing 

(2017) 

Middle 

school 

Educational robotics increased student 

engagement and aided in the learning of ratios 

and proportional reasoning skills. 

Castledine & 

Chalmers (2011) 

Middle 

school 

Educational robotics helped students reflect on 

problem-solving and allowed students to exercise 

higher-order thinking skills. 

 

Dagdilelis et al. 

(2005) 

High school The correct usage of basic programming concepts 

was better understood with the use of educational 

robotics. 

 

Theoretical Frameworks for Educational Robotics Practices 

Educational robotics practices utilize robots as mindtools (Jonassen, 2000) and 

adhere to the principles of constructivism and constructionism (Alimisis, 2013; Kucuk & 

Sisman, 2018). In fact, Mikropoulos and Bellou (2013) reported in their research that 

most educational robotics studies followed a mixed constructivist-constructionist 

theoretical framework. This section covers three aspects common to educational robotics 

theoretical frameworks found in the literature. These common aspects are (1) the use of 

robots as mindtools to aid student learning, and the utilization of mindtools within (2) 

constructivist theoretical frameworks, and (3) constructionist theoretical frameworks. 

Constructivism. Educational robotics practices for programming align with 

Piaget’s (1967, 1973) theory of constructivism (Harel & Papert, 1991; Mikropoulos & 
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Bellou, 2013; Petre & Price, 2004). According to Piaget (1967, 1973), constructivism is 

the building of abstract knowledge structures in one’s mind through concrete experiences. 

Some researchers even suggest that educational robotics represent one of the most 

effective examples of the application of constructivist theory (Kaya, Newley, Deniz, 

Yesilyurt, & Newley, 2015; Papert, 1993).  

In the constructivist view of learning, the mental creation of knowledge 

necessitates the use of hands-on activities (Alimisis, 2013; Piaget, 1973; Ucgul, 2013). 

As the manipulative is used to create concrete representations during the creation of 

abstract mental models, educational robotics fit within the constructivist framework 

(Mikropoulos & Bellou, 2013). Furthermore, Petre and Price (2004) emphasized, “In 

robotics, students’ learning is concrete, associated with phenomena they create, observe 

and interact with,” and it is through the physical manipulatives that “the abstractions they 

derive (or apply later) are grounded and relevant,” (p. 148). With their ability to be used 

as physical manipulatives which can illuminate abstract concepts, educational robotics 

can be used as a constructivist mindtool for learning. 

Constructionism. Both a learning theory and educational strategy, 

constructionism builds on Piaget’s (1967) theory of constructivism by emphasizing the 

construction of hands-on products. Born from Papert’s (1980) constructionist framework, 

the term constructionism was explained by Kafai and Resnick (1996) as “two types of 

intertwined construction” wherein “a designer comes to understand not only objective 

constraints but also subjective meaning” (p. 2). The first type of construction is physical 

and occurs when students construct their own learning artifacts through hands-on 

activities (Papert, 1980; Papert, 1993). The meaning-construction described by Kafai and 
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Resnick (1996) is the second type of entwined construction. On a mental level, 

constructionism, like constructivism, theorizes that learning is not as simple as the 

instructor transferring knowledge to the student (Papert, 1980, 1993). Rather, learning 

occurs when students construct, deconstruct, and reconstruct understanding in their minds 

based on their learning experiences aided by physical construction (Kafai & Resnick, 

1996; Mikropoulous & Bellou, 2013; Papert, 1993; Resnick & Silverman, 2005). As 

students construct their learning artifacts, they learn by continually creating and updating 

knowledge in their minds.  

A key difference between constructionism and constructivism is that more 

emphasis is placed on students constructing learning artifacts through hands-on activities 

in constructionism (Kafai & Resnick, 1996; Papert, 1993). Kafai and Resnick (1996) 

argued that the difference between constructivism and constructionism is that 

“Constructionist theory goes beyond Piaget’s constructivism in its emphasis on artifacts, 

asserting that meaning-construction happens particularly well when learners are engaged 

in building external and sharable artifacts” (p. 2). The learning artifacts in 

constructionism that are created by students “are subject to the test of reality; if they 

don’t work, they are a challenge to understand why and to overcome the obstacles,” 

Papert (1999, p. XIII) stressed. Therefore, constructivism is the idea that knowledge is 

built in one’s brain, while constructionism is more situated and pragmatic with the idea 

that knowledge is built through constructing tangible learning artifacts outside of the 

brain (Papert, 1990). 

Due to the buildable nature of many educational robotics kits and the block-based 

programs, they are often operated with, constructionism is heavily associated with the 
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combination of educational robotics and block-based programming. The utilization of 

constructionism in educational robotics theoretical frameworks is fitting, as Kafai and 

Resnick (1996) have affirmed, because “Constructionist theory suggests a strong 

connection between design and learning” as it “asserts that activities involving making, 

building, or programming – in short, designing – provide a rich context for learning” (p. 

2). Chambers and Carbonaro (2003) asserted that “mindtools, in the form of robotics, 

represents a constructionist approach to using technology” by aiding students in 

“representing knowledge, manipulating virtual and concrete objects, and reflecting on 

what they have designed and built” (p. 212). While constructionism has been used in the 

theoretical frameworks for studies on the use of educational robotics with preservice 

teachers (Hadjiachilleos, Avraamidou, & Papastavrou, 2013; Kabatova & Pekarova, 

2010), more numerous studies have focused the early childhood, elementary, and middle 

levels (Bers, 2010; Erwin, Cyr, & Rogers, 2000; Meerbaum-Salant et a;., 2013; Papert, 

1993). The construction of the physical manipulatives and the programming of 

commands in educational robotics activities align with the constructionist learning 

theory, which postulates that depth of learning is tied in large part to the physical 

construction of learning artifacts. 

Learning through collaboration within a community of learners is a pillar of 

constructionist theory (Papert, 1980; Huang et al., 2013). Accordingly, the collaboration 

of students in small groups for building and programming educational robotics is a core 

part of numerous studies’ instructional frameworks (Bakke, 2013; Bers & Portsmore, 

2005; Castledine & Chalmers, 2011; Chambers & Carbonaro, 2003; Kabatova & 

Pekarova, 2010; Mikropoulos & Bellou, 2013). Backing this aspect of constructionist 
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frameworks, researchers have identified that using educational robotics in conjunction 

with collaboration leads to positive results (Denis & Hubert, 2001; Huang et al., 2013; 

Wang, 2001). For example, Denis and Hubert (2001) and Eguchi (2007, 2013) found that 

constructionist robotics activities developed participants’ collaboration skills. Eguchi 

(2013) noted that 100% of students (N = 18) reported learning teamwork skills through 

the collaborative element of the constructionist robotics activities used by the researchers. 

Participants have also found the collaborative component of constructionist robotics 

activities to be beneficial for brainstorming and receiving feedback on programming 

ideas (Petre & Price, 2004; Sisman & Kucuk, 2019). Constructionist frameworks for 

robotics activities have garnered positive results by encouraging teamwork and the 

modification of participants’ understanding through the processes of feedback and 

reflection between participants, their peers, and their instructors (Denis & Hubert, 2001; 

Eguchi, 2013; Petre & Price, 2004; Sisman & Kucuk, 2019). 

Backing the spectrum of constructivist-constructionist educational robotics 

frameworks described in the above two sections is the use of educational robotics as 

mindtools. Jonassen (2000) popularized the term mindtools to describe computer-enabled 

tools that can be built or modified that aid in the facilitation of higher-order thinking 

skills. Students use the robots as aids to think with – helping them create mental models – 

and not from (Bers et al., 2002; Chambers & Carbonaro, 2003; Mikropoulos & Bellou, 

2013; Smith, 2013). The robots themselves are not what is being studied when mindtools 

are utilized – although a better understanding of the nuts and bolts of the robots may be 

an additional value – because the focus is on the use of the manipulatives to illustrate the 

abstract concepts often in the realms of science and math (Bers et al., 2002). Mikropoulos 
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and Bellou (2013) explained five reasons why educational robotics are commonly used as 

mindtools. These reasons included (1) the construction of knowledge through project-

based assignments which utilize real-world models, (2) providing a safe avenue for 

failure and discovery in a real-world environment, (3) allowing for learning through the 

scientific method, (4) allowing students to partake in manipulatives-based reflection, and 

(5) learning through collaboration and feedback in a community of learners (Mikropoulos 

& Bellou, 2013). To this end, Mikropoulos and Bellou (2013) reported that mindtools 

have a functional duty within both constructivist and constructionist frameworks. 

Teachers’ Difficulties of Integrating Educational Robotics into Education 

There are several barriers, limitations, and difficulties users experience while 

learning with educational robotics (Bruciati, 2004; Kim et al., 2018; Kucuk & Sisman, 

2018; Major, Kyriacou, & Brereton, 2014; McNally et al., 2006). These issues can be 

grouped into three categories: (1) financial barriers, (2) physical limitations, and (3) 

mental difficulties. The following paragraphs in this section will outline the financial, 

physical, and mental difficulties that have been described in the literature relating to 

educational robotics. 

Financial barriers. Costs associated with purchasing, maintaining, and even 

storing educational robotics may make the manipulatives an unjustifiable tool for 

teaching programming in some contexts (Greenley & Tidwell, 2002; Major et al., 2014). 

If obtaining robots for each student is unattainable in a school’s budget, this can lead to 

students working in groups (Smith, 2013). Although the benefits of a group dynamic for 

educational robotics frameworks have been outlined above, a study by Kucuk and Sisman 

(2018) highlighted that preservice teachers expressed difficulties adapting to the group 
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structure of educational robotics activities. Moreover, the cost inherent to educational 

robotics may discourage institutions from letting students take the manipulatives outside 

of the classroom (Major et al., 2014; McNally et al., 2006). If institutions have enough 

computers or mobile devices for their students, classes can perform similar programming 

exercises without the additional cost of educational robotics kits by using online 

simulators (Major et al., 2014; McNally et al., 2006). For these various reasons, 

educational robotics have inherent financial barriers. 

Physical limitations. As they are not directly necessary for programming 

education, educational robotics can create distractions for students and teachers (Major et 

al., 2014; McNally et al., 2006). Mechanical failure is one added issue when integrating 

educational robotics into programming education, which may impact both teachers and 

students (Major et al., 2014). For teachers, instructional time and preparation time can be 

lost to constructing the robots and setting up obstacle courses for students to program the 

robots through (Major et al., 2014). In addition, Kucuk and Sisman (2018) noted that 

their preservice teacher participants experienced difficulties with the physical aspects of 

the educational robotics activities, including problems with understanding the design 

steps, as well as losing interest in designing the robots. Preservice teachers also 

experienced difficulties connecting motors and sensors to ports and arranging the proper 

blocks of programming (Kucuk & Sisman, 2018). Similar data were gathered in a study 

by Sisman and Kucuk (2019) in which preservice teachers experienced difficulties with 

connecting the correct sensors to ports and assembling the educational robots because of 

the small parts. Substantiating Kucuk and Sisman’s (2018) and Sisman and Kucuk’s 

(2019) findings, a study by McGill (2012) with a population of non-computer science 
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majors learning programming reported participants’ frustration with the physical aspects 

of robots, including parts, sensors, and connectivity issues. As noted by these studies, the 

physical aspect of educational robotics can cause difficulties for some learners. 

Mental difficulties. Educational robotics may lead to mental difficulties for some 

learners (Bruciati, 2004; Kim et al., 2018; Kucuk & Sisman, 2018). Notably, some of the 

preservice teachers in Kucuk and Sisman’s (2018) study continued to report issues 

understanding complex programming processes. Another problem that has been observed 

in preservice teacher educational robotics studies deals with debugging (Kim et al., 

2018). This research showed that during activities that combined block-based 

programming and educational robotics, many preservice teachers feared being 

embarrassed by writing code that would not run properly on the robots (Kim et al., 2018). 

Consequently, preservice teachers erred on the side of caution and wrote more basic 

programs (Kim et al., 2018). Sisman and Kucuk (2019) reported similar findings in which 

preservice teachers felt debugging was a time-consuming and often frustrating process. In 

addition, researchers (Bruciati, 2004; Kucuk & Sisman, 2018) caution that intrinsic 

cognitive load may be increased by adding educational robotics to programming 

exercises. As noted by these researchers, the added mental impacts of educational 

robotics can cause difficulties for some learners. 

Impact of Educational Robotics on Programming Comprehension 

There is a need to prepare preservice teachers to integrate STEM learning into 

their future instruction (Kim et al., 2017). This section will begin by defining 

programming comprehension. Then, cognitive learning theories will be explained. After 

that, programming comprehension frameworks will be detailed. Next, a synthesis on the 
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topic of programming comprehension and teachers will be shared. To finish, an overview 

of the different ways programming comprehension has been measured relating to this 

study’s population will be examined. 

Defining Programming Comprehension 

Comprehension can be demonstrated by students by comparing, interpreting, 

describing, or organizing (Bloom, Engelhart, Furst, Hill, & Krathwohl, 1956). 

Programming comprehension has been described by Ramalingam and Wiedenbeck 

(1997) as “the process of understanding a program written by oneself or someone else, 

normally for the purpose of doing some further task with the program which requires 

understanding” (p. 125). Ala-Mutka (2004) described programming comprehension as 

the “ability to track code to build a mental model of the program and predict its behavior” 

(p. 5). Programming comprehension, Ramalingam and Widenbeck (1997) have asserted, 

consists of the skills people use to collaborate, modify and streamline programs as “most 

programming does not involve writing a program from scratch but instead starts from the 

basis of existing programs” (p. 125). 

Cognitive Learning Theories 

Learning theories help researchers explain the mental processes of how people 

learn (Harasim, 2012). Cognitive learning theories are the basis of cognitive models that 

explain how information is obtained from the learner’s environment and then processed 

into comprehension and long-term knowledge (Kalyuga, 2010; Sweller, 1994). This 

section will overview germane theories related to programming comprehension: schema 

theory and information processing. 
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Schema theory. To begin, schema theory explains how learners create models in 

their minds using an interconnected network of nodes organized through relationships 

among similar concepts (Johnson-Laird, 1983). Kalyuga (2010) explained schema as the 

relationships, categories, patterns, and overall meaning the mind ascribes to different 

information. Multiple schemas can be used in conjunction with each other in a 

hierarchical structure (Kalyuga, 2010). Short-term, or working memory, temporarily 

stores the information that is currently being used by the processor, is limited to a small 

number of ideas, and is responsible for the coordination of information and thinking 

(Atkinson & Shiffrin, 1968; Baddeley, 1992; Miller, 1956). Long-term memory is larger 

in capacity and contains all the knowledge a learner can call upon in order to give context 

to or understand a new idea (Klatzky, 1980; Smith, Shoben, & Rips, 1974). In Klatzky’s 

(1980) Network Model of Long-term Memory, long-term memories are likened to a 

mental dictionary with concepts filed by association while different nodes house 

conceptual associations and work in concert to form memories. The feature comparison 

model of long-term memory (Smith et al., 1974) differs from Klatzky’s (1980) network 

model. In the feature comparison model, defining characteristics are compared in 

memory recall (Smith et al., 1974). The propositional models of long-term memory 

(Norman & Rumelhart, 1975) mix aspects of the previously described models in which 

nodes take stored basic background information and combine that input with a 

proposition using a subject and a predicate. The parallel distributed processing models of 

long-term memory (McClelland, 2011), Driscoll (2005) explained, differs in that 

“multiple cognitive operations occur simultaneously as opposed to sequentially” (p. 95). 

Schema are often organized by semantic concepts (Navarro-Prieto & Canas, 2001; 
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Ormerold, 1990), and larger concepts can be combined, called chunks. Chunks contain 

large amounts of associated information that are interconnected through concepts and 

extensions (Sweller, 1994). Then, the chunks of automatic processing interact to create 

new schemas as new material is learned (Sweller, 1994). Schema theory helps explain 

how people handle and comprehend information. 

Information processing models. The information processing model, or IPM, is a 

theory which explains how learners process information (Newell & Simon, 1972). In the 

IPM, learners are like computers – or more fitting with this study, robots using sensors – 

and obtain information through their receptors, like the eyes and ears (Newell & Simon, 

1972). The information that is obtained by the receptors is then sent to the processor, 

whose function it is to understand the information (Newell & Simon, 1972). Similar 

information is stored within a learner’s memory using different silos, or nodes (Newell & 

Simon, 1972). Nodes are arranged starting with the name of the concept and extend into 

the nature of the concepts associated with that name (Kristensen & Osterbye, 1994). 

From there, nodes are further associated by intention, or the facets the concepts have in 

common. 

Similarly, Atkinson and Shiffrin’s (1968) Multi Store Model of Memory has 

many overlapping ideas about the comprehension of knowledge as Newell and Simon’s 

(1972) IPM. In the Multi Store Model of Memory, information is obtained from the 

environment through the senses like a computer, and it is then processed in a linear 

fashion (Atkinson & Shiffrin, 1968). Driscoll (2005) explained that Atkinson and 

Shiffrin’s (1968) model utilizes the structure of a “multistore, multistage theory of 

memory,” (p. 74-75) where information is absorbed through the receptors and then flows 
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through a metamorphosis from each state of sensory, working, and then long-term 

memory. In the Multi Store Model of Memory, information is encoded visually, by 

sound, or by meaning (Atikinson & Shiffrin, 1968). 

Programming Knowledge Frameworks 

Programming comprehension can be explained through learning theory. In this 

section, the types of programming knowledge that researchers have identified learners 

use when writing programs are discussed. Then, frameworks that explain how learners 

come to comprehend programming will be detailed.  

Syntactic, semantic, and strategic knowledge.  Types of programming 

knowledge can be divided into three different categories: syntactic, semantic, and 

strategic (Bucks, 2010; Mayer, 1979; McGill & Volet, 1997). Syntactic programming 

knowledge includes the vocabulary, grammar, and organizational rules used in a specific 

programming language (Mayer, 1979). Syntactic programming knowledge is unique to 

each programming language in much the same way English and Spanish have different 

rules about vocabulary, grammar, and syntax (Bucks, 2010). Semantic, described by 

Bucks (2010) as conceptual programming knowledge, on the other hand, includes 

programming ideas or functions which are transferrable between programming languages 

(Soloway & Ehrlich, 1984). Both syntactic and semantic knowledge contribute to 

strategic knowledge when creating or understanding a program in a certain context and 

aid in one’s ability to problem-solve in programming (Bucks, 2010). Strategic knowledge 

pertains to the problem-solving skills used to complete a programming problem (McGill 

& Volet, 1997). The three categories of programming knowledge include syntactic, 

semantic, and strategic knowledge and contribute to programming comprehension. 
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Frameworks of programming comprehension. There are multiple frameworks 

to explain how programming is comprehended. Two prominent frameworks are those of 

Mayer (1981) and Pennington (1986). These frameworks will be explored in this section. 

Mayer’s model. Mayer (1981) used the IPM (Newell & Simon, 1972) to explain 

programming comprehension. In the IPM, the cognitive processes which take place in the 

mind are represented by a computer (Newell & Simon, 1972). In Mayer’s (1981) model, 

the learner experiences the new information and processes it using short-term memory. 

While new information is being processed in the short-term memory, links are searched 

for within the long-term memory in order to give context and a previous understanding of 

the information (Mayer, 1981). The connected long-term memories are brought into the 

short-term memory, and then the mind updates the existing mental model relevant to the 

concept or adds the new information (Mayer, 1981). Bayman and Mayer (1983) 

investigated this model and found that most participants had an incomplete understanding 

of programs they were tested on at the conclusion of an introductory programming 

course. The researchers determined that the novice programmers needed concrete models 

of the programs in order to develop the necessary mental models for comprehension 

(Bayman & Mayer, 1983). 

Pennington’s model. Pennington’s (1986) framework of programming 

comprehension expands upon classic language comprehension frameworks by borrowing 

the idea of layered mental representations. Surface form representation, textbase 

representation, and situational modeling are all aspects Pennington (1986) borrows from 

traditional text comprehension models. Surface form representation is the first layer, 

which consists of a word for word recall of the text (Ramalingam & Wiedenbeck, 1997). 
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Next is the textbase representation, which includes abstractions from surface form 

representation (Pennington, 1986). Finally, there is the situation model in which the 

reader adds context to the text based on the reader’s previous knowledge or experiences 

with the content which the text describes (Pennington, 1986; Ramalingam & 

Wiedenbeck, 1997).  

Pennington’s (1986) programming comprehension framework divides into five 

levels: program, domain, operations, function, and state. The traditional concept of 

textbase representation aligns with Pennington’s (1986) program model while the 

traditional situation model aligns with Pennington’s (1986) domain model (Ramalingam 

& Wiedenbeck, 1997). The program model includes operations knowledge – 

understanding of basic pieces of programming – and flow control knowledge or 

understanding of loops or if/then statements (Ramalingam & Wiedenbeck, 1996). The 

domain model includes variables and the changing of data (Pennington, 1986). 

Operations knowledge includes basic operations in a single line of programming, 

function knowledge includes knowledge of the outcome of the program, while state 

knowledge consists of understanding how all the pieces of the program work together 

(Pennington, 1986; Ramalingam & Wiedenbeck, 1997).  

Two studies utilized Pennington’s (1986) framework. In the first study, 

professional programmers reviewed short programs within their programming language 

expertise (Pennington, 1986). Then, participants underwent a memory test based on 

program, domain, operation, functions, and state elements, and results showed that 

operations knowledge was well represented while domain knowledge was poorly 

represented (Pennington, 1986). In a second study, professional programmers were given 
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a longer program and then underwent a memory test based on program, domain, 

operation, functions, and state (Pennington, 1987). Next, the participants modified the 

program and answered new questions. Although the results of the first phase included 

errors in domain knowledge, the results of the second phase of the study had the highest 

scores on the domain knowledge (Pennington, 1987). Pennington (1987) interpreted these 

results as showing that program and domain knowledge are different and that 

comprehension-based activities likely increase domain knowledge. 

Programming Comprehension and Educational Robotics 

This section is divided into two focuses. First, educational robotics studies that 

have assessed programming comprehension among in-service and preservice teachers 

will be shared. Then, the ways in which programming comprehension of preservice 

teachers has been measured will be detailed. 

Educational robotics’ impact on teachers’ programming comprehension. 

Research in the areas of preservice and in-service teachers’ comprehension of 

programming and robotics is emerging (Eguchi, 2013; Jaipal-Jamani & Angeli, 2017; 

Kay, Moss, Engelman & McKlin, 2014; Kim et al., 2018; Kucuk & Sisman, 2018; Perritt, 

2010; Sullivan & Moriarty, 2009). These studies evaluate different aspects of 

programming comprehension through educational robotics. Since there are so few studies 

in the area of teachers’ programming comprehension and robotics, each of the following 

paragraphs will be dedicated to detailing either a study of in-service teachers’ or 

preservice teachers’ programming comprehension. 

In-service teachers. Through professional development sessions, the effects of 

educational robotics on in-service teachers’ programming comprehension have been 
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studied (Kay et al., 2014; Sullivan & Moriarty, 2009). These studies provided as-needed 

robotics professional development to train teachers in computer science concepts (Kay et 

al., 2014; Sullivan & Moriarty, 2009). The following paragraphs will synthesize these 

studies. 

Kay et al. (2014) evaluated educational robotics’ effects on programming 

comprehension among in-service K-12 teachers with no prior programming experience 

(N = 41). Over the course of three days of Lego robotics programming workshops, 

participants learned how to write basic programs for the robots and the skills necessary to 

start their own robotics clubs (Kay et al., 2014). Results indicated a statistically 

significant increase in programming knowledge and skills, with 90% of participants 

reporting that they felt they were competent or skilled in programming (Kay et al., 2014). 

The researchers stated that these results suggested that programming understanding 

among in-service teachers increased with the use of educational robotics (Kay et al., 

2014).  

Sullivan and Moriarty (2009) evaluated the robotics and programming knowledge 

of 20 in-service middle and high school teachers. The in-service teachers participated in 

professional development workshops at a robotics fair and were assessed with a 

pretest/posttest robotics and programming content knowledge instrument as well as a 

self-assessment survey (Sullivan & Moriarty, 2009). Results indicated statistically 

significant differences between the pretest and posttest, with all participants reaching a 

general knowledge of all assessment concepts (Sullivan & Moriarty, 2009). The self-

assessment data indicated that the participants’ content knowledge related to robotics and 
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programming increased significantly because of the workshops (Sullivan & Moriarty, 

2009).  

Preservice teachers. Researchers have begun to study preservice teachers’ 

comprehension of programming in different contexts (Eguchi, 2013; Jaipal-Jamani & 

Angeli, 2017; Kim et al., 2018; Kucuk & Sisman, 2018). Numerous researchers point out 

that robotics instruction is becoming more common in preservice teacher preparation 

around the world (Bruder & Wedeward, 2003; Hadjiachilleos et al., 2013; Kay et al., 

2014; Kaya et al., 2015; Kim et al., 2015; Majherová & Králík, 2017; Sullivan & 

Moriarty, 2009). However, there is limited research on using educational robotics for 

training preservice teachers in teacher preparation courses (Kucuk & Sisman, 2018; 

Jaipal-Jamani & Angeli, 2017). Few researchers have studied programming 

comprehension of preservice teachers through the lens of educational robotics activities 

(Eguchi, 2013; Jaipal-Jamani & Angeli, 2017; Kim et al., 2018). Each of these studies 

will be detailed in the following paragraphs. 

Eguchi (2013) studied 18 preservice teachers participating in an educational 

robotics course. Participants worked in groups sharing one robot and one computer 

(Eguchi, 2013). Participants were evaluated through observations (Eguchi, 2013). For the 

observations, participants were evaluated while teaching groups of classmates how to 

program their robots through difficult programming tasks (Eguchi, 2013). Each group 

was successful in teaching the other groups during the observations (Eguchi, 2013). 

Eguchi (2013) contended that teaching “indicates their mastery of the programming skills 

required in class since teaching is the highest form of learning” (p. 9).  
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Jaipal-Jamani and Angeli (2017) evaluated 21 elementary preservice teachers’ 

understanding of science and computational thinking concepts as a result of robotics 

activities in a science teaching methods course. The robotics activities accounted for six 

hours of contact time in which participants learned about algorithms, debugging, control 

structures, and writing sequences of programming (Jaipal-Jamani & Angeli, 2017). The 

researchers found statistically significant differences between the pre and posttest 

knowledge assessment scores, indicating that robotics activities were an effective strategy 

for increasing participants’ abilities to write algorithms and debug programs (Jaipal-

Jamani & Angeli, 2017). 

Kucuk and Sisman (2018) studied 15 preservice teachers’ experiences while 

learning programming and robotics. The participants learned programming and robotics 

in collaborative groups through a 13-week course, which met for four hours per week 

(Kucuk & Sisman, 2018). The robotics activities involved participants composing 

original programs for the robots (Kucuk & Sisman, 2018). Participants of the study 

indicated that they felt the educational robotics programming course improved their 

programming skills (Kucuk & Sisman, 2018).  

Kim et al. (2018) assessed 19 preservice teachers’ debugging techniques and 

common errors while using block-based programming. Debugging constitutes strategic 

programming knowledge (McGill & Volet, 1997), which combines both syntactic and 

semantic programming knowledge. In this study, preservice teachers participated in 12 

hours of robotics learning modules wherein they built and programmed robots (Kim et 

al., 2018). In their research, Kim et al. (2018) revealed that preservice teachers have 

difficulty locating and fixing errors in block-based programs.  
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Measuring preservice teachers’ programming comprehension. Studies have 

used different measures to evaluate the programming comprehension of preservice 

teachers, both with and without the intervention of educational robotics (Eguchi, 2013; 

Jaipal-Jamani & Angeli, 2017; Kucuk & Sisman, 2018; Kim et al., 2018; Yadav et al., 

2014). However, few of these studies have comprehensively measured and reported the 

impacts of different interventions, such as robotics, on preservice teachers’ programming 

comprehension (Kim et al., 2015). For instance, a study by Arlegui, Pina, and Moro 

(2013) on training teachers to use educational robotics provided only anecdotes about 

what participants learned. In another example, a study by Bers and Portsmore (2005) 

focused on partnerships between preservice teachers and engineering students learning 

programming with educational robotics. The following paragraphs will first detail the 

qualitative measures that have been used to assess preservice teachers’ comprehension of 

programming; then, the quantitative measures will be described. 

Qualitative measures. Various studies have utilized qualitative methods with 

which to evaluate preservice teachers’ learning and comprehension of programming 

(Eguchi, 2013; Kim et al., 2018; Kucuk & Sisman, 2018). In an educational robotics 

intervention, Kucuk and Sisman (2018) used preservice teachers’ responses to interview 

questions about their feelings on changes in their programming comprehension as a result 

of the study. Preservice teachers’ grasp of programming concepts was also evaluated by 

Eguchi (2013). In this study, preservice teachers were evaluated through teaching 

observations performed by the instructor. In a thorough investigation, Kim et al. (2018) 

measured preservice teachers’ comprehension of block-based programming by evaluating 

their debugging skills. Like Eguchi (2013), Kim et al. (2018) relied on observational data. 



www.manaraa.com

 

48 

To do this, Kim et al. (2018) reviewed video recordings of students’ debugging processes 

and used a coding instrument based on Vessey’s (1985) debugging paths in conjunction 

with Katz and Anderson’s (1987) error-locating techniques. This study did not implement 

educational robotics and focused on participants’ debugging processes in a block-based 

programming environment. The researchers focused on the debugging process citing the 

ideas of researchers such as Brennan and Resnick (2012), Grover et al. (2015), and Pea 

and Kurland (1984), who agree that students who create programs that simply run do not 

necessarily understand programming. Programs that run do not necessarily demonstrate 

programming comprehension because the program may run by chance due to students 

tinkering and rearranging programming blocks until a successfully functional 

arrangement of blocks is found (Brennan & Resnick, 2012; Kim et al., 2018). Therefore, 

Kim et al. (2018) investigated programming comprehension through the lens of 

debugging instead of through methods that evaluate if students can simply arrange 

programming blocks into functional formations (Kim et al., 2018). These studies utilized 

different qualitative measures to investigate programming comprehension among 

preservice teacher participants.  

Quantitative measures. Only one study uncovered in this literature review 

carefully assessed preservice teachers’ programming comprehension through quantitative 

measures. In an educational robotics study, Jaipal-Jamani and Angeli (2017) used two 

measures to gauge preservice teachers’ programming comprehension. These measures 

included: (1) a questionnaire to measure preservice teachers’ science knowledge which 

also included 3 Likert-type questions to assess participants’ perceived programming 

knowledge, and (2) a worksheet to assess participants’ comprehension on sequencing, 
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control structures, and debugging (Jaipal-Jamani & Angeli, 2017). These two different 

measures were used to investigate preservice teachers’ programming comprehension 

through quantitative methods. 

Impact of Educational Robotics on Motivation Related to Programming 

Few studies have examined motivation in relation to learning programming 

(DeClue, 2003; Feldgen & Clua, 2004; Jenkins, 2001; Kelleher et al., 2007). The section 

will focus on motivation related to programming. This section will begin with definitions 

of motivation and teacher motivation, as well as descriptions of contributing factors to 

motivation and motivation frameworks. To close, a synthesis of literature on the 

motivational impact of educational robotics on teachers will be presented. 

Motivation 

Johns (1996) describes motivation as the extent to which persistent effort is 

sustained toward a specific goal. Motivation combines mental and physical processes and 

presents as one’s determination to spend time and effort on a task and can be divided into 

two general categories of motivation: intrinsic and extrinsic (Cullen & Greene, 2011; 

Deci & Ryan, 2000). Intrinsic motivation applies to internal drive to complete tasks based 

on personal desire (Deci & Ryan, 2000; Maslow, 1943; Skinner, 1954). Extrinsic 

motivation, on the other hand, applies to external rewards such as pay given for 

completing tasks (Taylor, 1916). According to research by Sinclair (2008), teachers’ 

intrinsic motivation is greater than extrinsic motivation to teach. As cited in Han and Yin 

(2016), Dörnyei and Ushioda (2011) divide teacher motivation into multiple components. 

Han and Yin (2016) explained these components as (1) teachers’ inherent interest in 

teaching, (2) lifelong commitment, and (3) discouraging factors based on teachers’ 
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negative experiences. Motivation is abstract, complex, and includes numerous indicators 

(Ball, 1977; Jenkins & Davy, 2002; Law, Lee, & Yu, 2010). These numerous aspects of 

motivation will be explained here. Then, frameworks dealing with motivation will be 

outlined. 

Indicators of motivation. Researchers have put forward numerous indicators of 

motivation which fall into general categories like engagement (Singh, Granville, & Dika, 

2002), extrinsic motivation (Amabile, Hennessey, & Tighe, 1994; Law et al., 2010; 

Taylor, 1916), interest (Dewey, 1913; O’Keefe & Harackiewicz, 2017), intrinsic 

motivation (Deci & Ryan, 2000; Maslow, 1943; Skinner, 1954), self-efficacy (Bandura, 

1997), and value (Martin, 2007). These general indicators of motivation will be described 

below.  

Engagement. Flow theory states that the natural curiosity activated in learners is 

vital for keeping learners intrinsically motivated (Egbert, 2003; Huang, Backman, & 

Backman, 2010). Engaging learning tasks are required in order to maintain flow 

(Csikszentmihalyi, 1975, 1990, 2000) within intrinsic motivation.  

Behavioral engagement refers to learners’ attention, effort, and persistence (Kim 

et al., 2017; Skinner, Kindermann, & Fuller, 2009). Contributing to the classroom, 

concentration, and observable effort constitute behavioral engagement (Skinner et al., 

2009). The presence of behavioral engagement can be observed as on-task involvement 

and participation (Fredricks, Blumenfeld, & Paris, 2004; Kim et al., 2015, 2017; Skinner 

et al., 2009). A lack of behavioral engagement can be observed through learners’ dearth 

of attention or expression of dissatisfaction with a task.   
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Cognitive engagement centers on a learner’s investment in a task (Fredricks et al., 

2004). Cognitive engagement is linked to the way in which learning tasks are structured, 

and the learning strategies involved (Kim et al., 2017). Motivation and self-regulated 

learning are related to cognitive engagement (Fredricks et al., 2004).   

Emotional engagement refers to the positive or negative feelings learners have 

about the learning task which motivates students toward finishing learning tasks (Kim et 

al., 2017; Skinner et al., 2009). High emotional engagement has been shown to indicate 

motivated involvement in learners while low emotional engagement has been shown to 

indicate withdrawal from a learning task (Skinner et al., 2009). Engagement is linked to 

flow and, thus, also indicates intrinsic motivation (Martin, 2007, 2012).  

Extrinsic motivation. Extrinsic motivation includes the motivating factors 

external to learning like awards, recognition, or punishments (Amabile et al., 1994; Law 

et al., 2010; Taylor, 1916). When people perform a task because of extrinsic motivation, 

it may not be because they take enjoyment in the task itself, rather they are focused on 

obtaining a reward (Cullen & Greene, 2011). High course grade aspirations and the desire 

to score well on projects are examples of extrinsic motivation in education (Glynn, 

Brickman, Armstrong, & Taasoobshirazi, 2011). Similarly, career aspirations and the 

drive to obtain the desired job represent extrinsic motivation (Glynn et al., 2011). 

Interest. Interest plays an important role in motivation (Deci, 1992; O’Keefe & 

Harackiewicz, 2017). Interest is tied to the content of the learning task and reflects a level 

of increased attention and effort (Krapp, Hidi, & Renninger, 1992; Renninger & Hidi, 

2011). In an academic context, Singh et al. (2002) note that engagement and interest are 

linked within motivation as engagement is “active involvement, commitment, and 
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attention as opposed to apathy and lack of interest” (p. 324). Interest represents intrinsic 

motivation and is tied to flow theory (Chan & Ahern, 1999; Csikszentmihalyi, 1975, 

1990, 2000; Yonghiu, 2010). Flow is a level of learning absorption which sustains 

learners’ motivation over long periods of time (Csikszentmihalyi, 1975, 1990, 2000; 

Chan & Ahern, 1999; Yonghiu, 2010).   

Intrinsic motivation. Intrinsic motivation is the internal drive people have to 

complete tasks based on personal desire (Deci & Ryan, 2000; Maslow, 1943; Skinner, 

1954). When people demonstrate intrinsic motivation, they have a commitment to goal 

attainment based on an internal enjoyment in completing the task (Amabile et al., 1994; 

Law et al., 2010). Deci and Ryan (2000) link intrinsic motivation to self-regulation, 

persistence, and high performance, among other related indicators and outcomes. 

Self-efficacy. Self-efficacy is one’s belief in one’s ability to succeed (Bandura, 

1997) and signals highly versatile motivation (Bandura, 1997; Martin, 2007; Pajares, 

1996). Self-efficacy is built through successes with experiences completing similar tasks 

related to the task at hand (Bandura, 1997). Learners who have high self-efficacy in 

relation to a learning task’s content are likely to have more determination and adapt better 

in the face of adversity when experiencing initial difficulty with a learning task and 

follow-through (Bandura, 1997). Self-efficacy is an indicator of motivation and is also 

linked to expectancy-value (Martin, 2007).  

Value. In learning theory, to what level learners believe that a task is useful, 

pertinent, and manageable to them is categorized as the general concept of value 

(Belland, Kim, & Hannafin, 2013). Task value is used to describe learners’ perceptions of 

how important, interesting, and useful a task is (Wigfield & Eccles, 2000). Value 
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promotes intrinsic motivation (Belland et al., 2013). Learners who perceive a learning 

task as having a high task value produce more effort toward completing the task at hand 

(Belland et al., 2013). Expectancy-value suggests that behavior is an outcome of the 

perceptions an individual has for their expected level of success combined with their 

perceptions of the value associated with completing the task (Fishbein & Ajzen, 1972).  

Motivation models. Anderson and McLoughlin (2007) have remarked how 

today’s programming students are impatient and expect immediate success while 

beginning to learn to program. Jenkins (2001) argued that students’ motivation relating to 

programming could be divided into four categories: intrinsic, extrinsic, social, and 

achievement. Jenkins (2001) noted that many undergraduates are motivated by the 

extrinsic promise that learning programming will expand their money-making potential. 

However, Jenkins (2001) argued that intrinsic motivation was required for learners to 

successfully learn how to program. There are several frameworks for motivation, 

including those by Keller (1987), Svinicki (2010), and Vollmeyer and Rheinberg (2006). 

These frameworks are shared in this section. 

Keller’s (1987) ARCS model of motivation, for instance, is based on four 

components of motivation: attention, relevance, confidence, and satisfaction. In Keller’s 

(1987) framework, attention can be harnessed by surprise or inquiry. Relevance can be 

formed by using real-world examples (Keller, 1987). Confidence can be created by 

showing a learner that they can succeed with the learning task (Keller, 1987). Satisfaction 

in Keller’s (1987) framework links to a learner’s feelings that the task is inherently 

rewarding. The ARCS framework points to attention, relevance, confidence, and 

satisfaction as factors that can promote and sustain a learner’s motivation (Keller, 1987).  
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Svinicki (2010) touted a combined theory of motivation comprised of three 

factors: the value of the task, the ability to influence the outcome of the task, and self-

efficacy. Value of task is based on multiple different factors, including (a) how 

interesting the task is to the learner, (b) the relationship between the long-term goals of 

the learner and the task, (c) the learner’s perceived usefulness of the task, (d) how the 

task is valued by the learner’s peers, and (e) how important others view the task 

(Svinicki, 2010). The ability to influence the outcome of the task is the learner’s 

perception of if they can control the outcome of the task (Svinicki, 2010). A learner’s 

self-efficacy is a learner’s belief that they can succeed (McGill, 2012). Svinicki’s (2010) 

combined theory of motivation aligns with the established theories of self-determination, 

expectancy-value, and behavioral, cognitive, and achievement goal orientation. 

The cognitive-motivational model uses the expectancy-value model and has four 

factors of motivation (Vollmeyer & Rheinberg, 2006). These factors consist of the 

probability of success, anxiety related to failure, natural interest, and level of challenge 

(Vollmeyer & Rheinberg, 2006). Anxiety in the cognitive-motivational model is tied to 

fear of failure, while the challenge links to whether or not the learner wants to have 

success with the task are aligned to expectancy-value (McGill, 2012). The cognitive-

motivational model factors work in combination with a learner’s level of engagement and 

concentration (Vollmeyer & Rheinberg, 2006). 

Motivation Related to Programming and Educational Robotics 

Research indicates that participants with high levels of motivation spend more 

time on learning, engaging learning materials with higher intensity, cooperate more with 

peers, and are more open to learning and using new knowledge (Levin & Long, 1981; 
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Martin, 2007). Today’s programming learners are motivated in ways unlike any other 

generation (Guzdial & Soloway, 2002; Trees, 2010). Literature supports the motivational 

impacts of educational robotics on novices learning programming in a variety of contexts 

(Apiola, Lattu, & Pasanen, 2010; Cheng, 2017; McGill, 2012; Osborne, Thomas, & 

Forbes, 2010; Petre & Price, 2004). For example, comparative research by Yamazaki et 

al. (2015) with a mixed middle and high school population reported that utilizing 

educational robotics increased positive responses to motivation questions compared to 

game-based programming application control data. Research by Kim et al. (2015, 2018) 

showed that preservice teachers must maintain high levels of intrinsic motivation to 

succeed while learning programming. The following paragraphs explain the current 

literature specific to preservice and in-service teachers’ programming motivation and the 

impacts of educational robotics.  

Teachers’ programming motivation. Negative feelings new teachers develop 

about science concepts negatively influence their ability to become effective teachers 

(Appleton, 2003; Bryan, 2003; Davis, Petish, & Smithey, 2006). Various modalities for 

motivating novice programmers who may be struggling with programming have been 

investigated, from multimedia modalities to educational robotics (Kolling & Rosenberg, 

2001; Rich, Perry, & Guzdial, 2004; Yamazaki et al., 2015). McGill (2012) pointed out, 

“It is important to investigate empirically whether or not learning environments actually 

have an effect on student motivation since many of these systems were built for that 

specific purpose” regarding different products for programming motivation (p. 2). 

Nevertheless, numerous researchers studying the motivational effects of educational 

robotics did not define motivation or provide details about their instruments’ questions, 
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validity, and reliability (Adams, 2010; Cliburn, 2006; Lauwers, Nourbakhsh, & Hamner, 

2009). Thus, previous research pertaining to motivation specific to preservice teachers is 

indistinct.  

Several researchers have recently studied educational robotics and programming 

with in-service and preservice teacher populations (Jaipal-Jamani & Angeli, 2017; Kaya 

et al., 2015; Sisman & Kucuk, 2019). Educational robotics interventions have been 

effectively used to enhance preservice teachers’ motivation to integrate programming into 

their curricula (Jaipal-Jamani & Angeli, 2017; Kaya et al., 2015). Jaipal-Jamani and 

Angeli’s (2017) study reported that over 85% of their preservice teacher participants were 

motivated to use robotics in their teaching. Similarly, Kaya et al.’s (2015) study exploring 

the views of 11 preservice teachers on engineering concepts reported that 100% of their 

participants decided to integrate block-based programming and educational robotics into 

their elementary science classes. A study by Sisman and Kucuk (2019) adds that 

preservice teachers were most motivated by educational robotics and the idea that they 

could learn to teach their future students how to program educational robots. 

Teachers’ programming motivation based on motivational indicators. Studies 

have demonstrated improvements to in-service and preservice teachers’ motivation 

through educational robotics interventions (Jaipal-Jamani & Angeli, 2017; Kay et al., 

2014; Kim et al., 2015; Kucuk & Sisman, 2018; Osborne et al., 2010; Perritt, 2010). For 

instance, Kay et al. (2014) found that in-service teachers’ confidence in their 

programming skills increased in a statistically significant manner after they completed 

educational robotics activities, including robot construction and programming. Perritt 

(2010) concluded that confidence built through educational robotics activities increased 
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preservice and in-service teachers’ motivation to implement educational robotics and 

programming into their instruction. Sullivan and Moriarty (2009) found that educational 

robotics instruction improved in-service teachers’ perceptions of the value of 

programming educational robotics in the classroom, implying that participants are 

motivated to utilize programming in the classroom. For preservice teacher populations, 

research indicated that developing self-confidence with programming educational 

robotics is the key to motivating preservice teachers to use programming (Kim et al., 

2015; Osborne et al., 2010). Similarly, several researchers have shown that preservice 

teachers’ engagement and confidence in STEM concepts increased after being involved 

in educational robotics activities (Jaipal-Jamani & Angeli, 2017; Kim et al., 2015; Kucuk 

& Sisman, 2018). Furthermore, preservice teachers’ interest and self-efficacy in STEM 

concepts increased after they completed educational robotics activities (Adams et al., 

2014; Jaipal-Jamani & Angeli, 2017; Kim et al., 2015; Ortiz et al., 2015).  

Measuring Motivation 

Motivation has many interrelated indicators (Bandura, 1997; Dewey, 1913; 

Martin, 2007; O’Keefe & Harackiewicz, 2017; Singh et al., 2002). In this section, general 

instruments for gathering data on motivation in education will first be described. Then, 

more specific instruments that have been designed to evaluate programming motivation 

will be shared. 

Educational motivation instruments. Numerous instruments exist for measuring 

participants’ general motivation in relation to the field of education. Students’ motivation 

can be measured with the Motivated Strategies for Learning Questionnaire, or MSLQ 

(Pintrich, 1999; Pintrich & De Groot, 1990). Landry’s (2003) Student Motivation Scale 
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includes items inspired by Pintrich and De Groot (1990) to measure undergraduate 

students’ motivation to complete their studies in the face of obstacles (Martin, 2003). 

Similarly, Sinclair, Downson, and McInerney (2006) devised the Motivational 

Orientations to Teach Survey, or MOT-S, which includes 80 motivational questions 

aimed to assess the teaching motivation of preservice teachers. Other motivation 

instruments include the Questionnaire of Current Motivation, which is designed to 

measure initial motivational and uses the cognitive-motivational factors of the probability 

of success (Vollmeyer & Rheinberg, 2006), anxiety related to failure, natural interest, and 

level of challenge (Rheinberg, Vollymeyer, & Burns, 2001). Keller’s (1983, 1987) 

ARCS-based Instructional Materials Motivation Survey instrument measures the impact 

of integrating a tool designed for increasing motivation into one’s instruction. Glynn et 

al. (2011) created the Science Motivation Questionnaire II, which evaluates the general 

science motivation of college learners through the subscales of intrinsic motivation, self-

determination, self-efficacy, career motivation, and grade motivation. 

Evaluating motivation towards programming. Specialized instruments directly 

related to programming concepts and educational robotics have been inspired by the more 

general motivation instruments described above. This section will first highlight 

qualitative measures of programming motivation. Then, this section will describe 

quantitative measures of programming motivation. 

Qualitative measures. There are different qualitative measures for motivation 

related to programming and educational robotics (Jaipal-Jamani & Angeli, 2017; Kaya et 

al., 2015; Kim et al. 2015; Kucuk & Sisman, 2018; Yadav et al., 2014). Kim et al. (2015) 

used an adapted version of Black and Deci’s (2000) learning self-regulation 
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questionnaire, or SRQ-L, to measure autonomous and controlled motivation. In the study, 

Kim et al. (2015) used surveys and interviews to gather data on preservice teachers’ 

motivation while using educational robotics. Yadav et al. (2014) measured preservice 

teachers’ motivation to integrate computational thinking programming exercises into 

their future classrooms by using open-ended questions focusing on three categories, 

including computational thinking, the relationship of computational thinking to other 

disciplines, and integrating computational thinking into the classroom. Similarly, Kaya et 

al. (2015) studied preservice teachers’ experiences in learning programming through 

educational robotics and measured participants’ motivation through qualitative data 

gathered through reflective essays. Kucuk and Sisman (2018) gathered data on preservice 

teachers’ motivation through interview questions like “How have you felt cognitively and 

emotionally while working on the robotics programming activities?” (p. 307). Jaipal-

Jamani and Angeli (2017) studied preservice teachers’ interest and self-efficacy relating 

to programming concepts and robotics. In this study, Jaipal-Jamani and Angeli (2017) 

utilized a questionnaire about participants’ self-efficacy with computational thinking and 

robotics as well as a questionnaire in which participants self-rated their confidence with 

teaching block-based programming educational robotics lessons. Ortiz et al. (2015) 

gathered qualitative data on preservice teachers’ motivation during educational robotics 

activities through observations, participants’ comments, and reflective essays.  

Quantitative approaches. Other studies have taken quantitative approaches to 

investigate the effects of educational robotics on motivation (McGill, 2013; Wang, Mei, 

Lin, Chiu, & Lin, 2009). A prime example is McGill’s (2013) instrument, which borrows 

aspects of Keller’s (1987) ARCS model and Wiedenbeck’s (2005) computer self-efficacy 
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scale. McGill’s (2013) instrument is comprehensive and is specialized for educational 

robotics motivation. McGill’s (2013) study measured four components of motivation: 

attention, relevance, confidence, and satisfaction. This instrument investigated the 

motivational effects of educational robotics on a population of non-computer science 

majors using Wiedenbeck’s (2005) computer programming self-efficacy scale measured 

the confidence of participants as they completed programming tasks. McGill (2012) 

measured motivation through quantitative data gathered with Keller’s (1987) 

instructional materials motivation survey. Other examples are the Wang et al.’s (2009) 

motivation questionnaire and experience questionnaire. The motivation questionnaire 

evaluated students’ feelings related to programming motivation before and after 

instruction and includes the three subscales of motivation to learn programming, self-

efficacy, and perception of programming (Wang et al., 2009). The experience 

questionnaire, which was given after instruction, included two subscales for classroom 

experience and classroom atmosphere (Wang et al., 2009). 

Chapter Summary 

 This literature review examined applicable literature on the topics of 

programming in K-12 education, educational robotics, comprehension, and motivation. 

Programming is the process of designing and creating special instructions for computers 

to run, known as programs (Ceruzzi, 1998). Block-based programming languages can 

help propel novices past the traditional difficulties of text-based programming languages 

in order to explore abstract computer science concepts quickly (Bers et al., 2014; Kim et 

al., 2018; Lye & Koh, 2014; Malan & Leitner, 2007; Wilson & Moffat, 2010). Although 

block-based programming has demonstrated positive motivational effects with preservice 
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teachers (Yadav et al., 2011; Yadav et al., 2014), programming is still inherently abstract. 

Both in-service and preservice teachers attribute their lack of confidence toward teaching 

computer science content to their perspectives that programming is difficult and abstract 

(Bower et al., 2017; Grover & Pea, 2013; Ortiz et al., 2015; Resnick et al., 2009). 

Educational robotics have been shown to make learning abstract concepts more concrete 

(Altin & Pedaste, 2013; Barker et al., 2014; Mikropoulos & Bellou, 2013; Nugent et al., 

2010).  Block-based programming and educational robotics pair well together because of 

the constructible nature of each medium (Dagdilelis et al., 2005; Staszowski & Bers, 

2005). Numerous studies undergird the benefits of pairing educational robotics with 

programming (Bers et al., 2002; Bers & Ponte, 2005; Huang et al., 2013). Commonly, 

educational robotics practices use robots as mindtools (Jonassen, 2000) within 

constructivist and constructionist learning frameworks (Alimisis, 2013; Kucuk &Sisman, 

2018; Mikropoulos & Bellou, 2013). Programming comprehension is the ability to 

predict what a program will do by utilizing mental models (Ala-Mutka, 2004) and 

includes syntactic, semantic, and strategic knowledge (Bucks, 2010; Mayer, 1979; 

McGill & Volet, 1997). The effects of educational robotics on the programming 

comprehension of in-service (Kay et al., 2014; Sullivan & Moriarty, 2009) and preservice 

teachers (Eguchi, 2013; Jaipal-Jamani & Angeli, 2017; Kim et al., 2018; Kucuk & 

Sisman, 2018) have been studied with varying results. Qualitative measures of preservice 

teachers’ programming comprehension (Eguchi, 2013; Kim et al., 2018; Kucuk & 

Sisman, 2018) are more common than quantitative measures (Jaipal-Jamani & Angeli, 

2017). Recent studies of in-service and preservice teacher populations have shown that 

educational robotics can be motivational (Jaipal-Jamani & Angeli, 2017; Kaya et al., 
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2015; Sisman & Kucuk, 2019). There are numerous education-specific motivational 

instruments, but few tailored to programming education (McGill, 2013; Wang et al., 

2009). In conclusion, educational robotics can be used to make abstract concepts like 

programming more concrete (Altin & Pedaste, 2013; Barker et al., 2014; Mikropoulos & 

Bellou, 2013; Nugent et al., 2010) and have been shown to have motivational effects with 

teacher populations (Jaipal-Jamani & Angeli, 2017; Kaya et al., 2015; Sisman & Kucuk, 

2019).  
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CHAPTER 3 

METHOD

The purpose of this action research was to evaluate the effect of educational on 

the programming comprehension and motivation of preservice teachers at a medium-

sized liberal arts university in the southeastern United States. The research questions for 

this study were: 

1. What is the effect of educational robotics on preservice teachers’ comprehension 

of programming concepts? 

2. How and to what extent does educational robotics influence preservice teachers’ 

motivation related to programming? 

Research Design 

This study utilized action research. According to Mertler (2017), action research 

is typically carried out by practitioners with a “vested interest in the teaching and learning 

process” of a specific population and setting (p. 4). The main advantage of action 

research is its specificity. Greenwood and Levin (2007) described action research as 

“context bound” (p. 63). This means that action research is specific to the class and 

participants taking part in the study (Creswell, 2014; Mertler, 2017; Rudestam & 

Newton, 2007). Action research fits my context because I was not only the researcher in 

this study but also the instructor. I had a highly contextualized problem specific to my 

course that needed to be addressed. Although the results of an action research study such 

as mine cannot be widely generalized to other instances and settings, the results of the 
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study are tailored to the research questions and environment being investigated. Further, 

an action research type intervention is more appropriate for my teaching context than a 

true experimental design with control and experimental treatments. In my action research 

study, all the participants received the benefits of the study. What differentiates action 

research from more traditional lines of inquiry are both the process and the end goal 

(Mertler, 2017). While traditional lines of inquiry are typically performed by outsiders 

withdrawn from the study’s subjects with the goal of documenting teaching or learning, 

action research is typically performed by insiders, such as myself, in collaboration with 

the participants being studied with the end goal of improving teaching and learning (Zeni, 

1998). Accordingly, the goal of this action research was designed to pinpoint actionable 

steps to improve teaching practices and student outcomes.  

Greenwood and Levin (2007) described one advantage of action research as it is a 

“pragmatic” system to solve “real-life problems holistically” (p. 63). Mertler (2017) 

affirmed that action research solves problems holistically by stating that action research 

tends to align more harmoniously with mixed methods than with singularly qualitative or 

quantitative strategies. In addition, Morgan (2014) explained that mixed methods fit best 

with a pragmatist paradigm. As mentioned in the Researcher Subjectivities and 

Positionality section of this dissertation, my personal paradigm aligns with a pragmatist 

standpoint. Thus, mixed methods were selected for this study to provide a holistic and 

best-aligned method for evaluating the research questions. While the quantitative data in 

this study were employed to point toward the effect of the intervention on programming 

comprehension and motivation, qualitative data were harnessed to report the experiences 

and opinions of the participants. Analyzing two different forms of data, Mertler (2017) 
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argued, “leads to greater credibility in the overall findings” (p. 107). By analyzing two 

different styles of data, I was able to discover information that would have otherwise 

been overlooked if only one data collection method was utilized. For my study, mixed 

methods merged quantitative data and qualitative data, which eliminated biases of a 

single data collection method, which showed the full picture of the phenomena at hand 

(Creswell, 2014). The mixed methods design was chosen so I could triangulate if the data 

gathered from the motivation survey are more complex than one data collection style 

would detect (Almalki, 2016). Triangulation is a process of corroboration using evidence 

from different sources, different types of data, or different methods of data collection 

(Buss & Zambo, 2014; Creswell, 2014; Patton, 2002). I compared data side-by-side from 

the surveys and individual interviews to determine if the quantitative data supported the 

qualitative data. 

I utilized a convergent parallel mixed methods design for my action research. 

Creswell (2014) explained convergent parallel mixed methods design as a technique in 

which the researcher gathers quantitative and qualitative data at the same time then 

analyzes the results of the study separately in order to see if the triangulation of results 

“confirm or disconfirm” each other (p. 219). The first reason convergent design was used 

for this study is outlined by Creswell and Plano Clark (2018), who have described 

convergent design as an intuitive and efficient strategy for researchers new to performing 

mixed methods. Another reason convergent design was used in this study was time. 

Creswell and Plano Clark (2018) noted that convergent parallel mixed methods are often 

used when the researcher “has limited time available for collecting data in the field.” (p. 

68). The small window of time available to dedicate to this study within the class 
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schedule necessitated the convergent accumulation of quantitative and qualitative data. 

Further, convergent design enabled me to compare participants’ feelings gathered 

through qualitative questioning with the data gathered from my standpoint through 

surveys (Creswell, 2014; Creswell & Plano Clark, 2018). Coming full circle, Creswell 

and Plano Clark (2018) linked the pragmatic nature of action research described by 

Greenwood and Levin (2007) to convergent design with the statement, “assumptions of 

pragmatism are well suited for guiding the work of merging the two approaches 

[quantitative and qualitative] into a larger understanding” (p. 69). Because this study 

utilized both surveys and individual interviews to analyze motivation, the perspectives of 

both the participants and I were united. 

Setting and Participants 

This study took place at a medium-sized liberal arts university in the southeastern 

United States. This study occurred within an educational technology course that 

preservice teachers must take to graduate as education majors. In this course, students 

were taught how to utilize computers, multimedia, mobile technologies, interactive 

whiteboards, apps, and websites, among other educational technologies. There were no 

prerequisite classes for this course. Therefore, students came into the course with various 

levels of experience with technology. The setting of this study was a large digital learning 

lab complete with personal computers for each student, a SmartBoard, two projectors, 

and associated screens. In addition to the computer clusters offered in this room, there 

were spaces for collaboration activities in the room. There were 12 Lego EV3 robotics 

kits for the class along with 24 laptops with the Lego programming software, so each 
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student could write his or her own programs. Each laptop was Bluetooth enabled in order 

to communicate the programs to the Lego EV3 robots. 

This study included a purposeful sample of participants. As Creswell (2014) 

explained, purposeful sampling allows the researcher to select the participants who will 

“best help the researcher understand the problem and the research question” (p. 189). The 

inclusion criteria stipulated that the participants needed to be preservice teachers with 

education majors. Therefore, out of the two sections of the course taught by me, the 

section of the course with the fewest non-education major students was selected to 

preserve the highest population value for the study. Out of the 23 students in the class, 

there were two non-education majors whose data were removed from the study to avoid 

threats to validity. Of the eligible 21 education majors, three participants dropped out of 

the class during the study. These participants’ data were removed prior to analysis. An 

ultimate total of 18 undergraduate preservice teachers made up the sample for this study. 

As shown in Table 3.1, these undergraduate preservice teacher participants represented 

all the education majors offered by the university: early childhood education (2), 

elementary education (9), middle level education (3), special education (2), and physical 

education (2). The participants included 15 females and three males. The participants’ 

ages ranged from 18 to 23, with a mean age of 19 (SD = 1). The participants included 

freshmen (6), sophomores (11), and one junior. Four of the participants reported their 

technology comfort level as basic, 12 intermediate, and two advanced. Only one 

participant had limited prior programming experience and prior programming instruction. 

Two participants reported having limited prior experience programming a robot and prior 

robotics instruction.  
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Table 3.1. Participants’ Demographic Information 

Age Gender Classification Education 

Major 

Tech. 

Comfort 

Level 

Prog. 

Exp. 

Robo. 

Exp. 

19 Female Sophomore Elementary Intermediate No No 

18 Female Sophomore Elementary Intermediate No No 

21 Female Junior Elementary Intermediate No No 

19 Female Sophomore Elementary Basic Yes Yes 

19 Female Sophomore Elementary Advanced No No 

20 Female Sophomore Special Intermediate No No 

23 Female Sophomore Physical Intermediate No No 

18 Female Freshman Elementary Intermediate No No 

19 Female Freshman Early Childhood Basic No No 

18 Female Freshman Early Childhood Basic No No 

19 Male Sophomore Physical Intermediate No No 

19 Female Sophomore Elementary Intermediate No No 

18 Female Freshman Middle Basic No No 

20 Male Sophomore Middle Intermediate No No 

20 Female Sophomore Special Intermediate No No 

18 Female Freshman Elementary Intermediate No No 

18 Female Sophomore Elementary Advanced No No 

18 Male Freshman Middle Intermediate No Yes 

Note. Prog. Exp. means programming experience and Robo. Exp. means robotics 

experience. 

 

Intervention 

This study utilized an educational robotics intervention that spanned four weeks 

of lessons. The lessons included in this intervention used mindtools to teach 

programming through a constructivist framework (Jonassen, 2000; Piaget, 1967) in a 

collaborative environment. These lessons were inspired by a robotics curriculum 

previously developed by the research setting’s physics and education faculty, including 

myself. This robotics curriculum was created as part of a federal No Child Left Behind 

Improving Teacher Quality Higher Education grant for a grant titled PRISM – 

Partnership for Robotics Integration using Science and Math (South Carolina 

Commission on Higher Education, 2016). Activities and challenges were abridged and 
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tailored to the specific goal of teaching programming through robotics. Lego EV3 robots 

running the EV3-G block-based programming language were chosen for this intervention 

because of Lego robotics’ popularity in schools at the K-8 levels (Martin et al., 2000; 

Martin et al., 2011; Martin & Resnick, 1993). Participants were paired randomly for the 

intervention. Marzano (2007) recommended cooperative pairs for learning activities 

involving problem-solving in order to allow learners to collaboratively discuss and reflect 

upon the problems they are given. Classes met twice per week for one hour and fifteen 

minutes per period. Each lesson was aligned to both the South Carolina Computer 

Science and Digital Literacy Standards for grades K – 8 (South Carolina Department of 

Education, 2017) as well as course standards. 

The robotics intervention was divided into four week-long units. These units were 

(1) Basic Procedures, (2) Advanced Procedures, (3) Control Structures, and (4) Variables. 

This sequence of these units was based on the robotics curriculum created as part of a 

PRISM grant (South Carolina Commission on Higher Education, 2016). The Basic 

Procedures unit focused on the core syntactic programming skills needed to write 

functional programs. The Advanced Procedures unit focused on semantic and strategic 

programming skills needed to write programs which navigated the robots around 

obstacles. The Control Structures unit focused on writing programs utilizing flow control 

based on predetermined parameters, such as if/then statements and loops. The Variables 

unit focused on integrating variables into the flow control of advanced programs. These 

units are shown in Table 3.2 with two main topics per unit. Each unit consisted of 

demonstrations, learning activities, and challenges. These units will be described in detail 

in the following sections.  
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Table 3.2. Robotics Intervention Units 

 

Unit Topics 

Basic Procedures Syntactic knowledge of the programming language 

Odometry 

Programming for seconds/rotations/degrees 

  
Advanced Procedures Semantic programming knowledge 

Pseudocoding 

Strategic programming knowledge 

Programming turning 

  
Control Structures Flow control 

Loops 

If/then statements 

 

Variables Variables 

Combining variables with control structures 

 

Intrinsic motivation involved learners’ desire to learn about the topic due to their 

own internal self-interests (Eccles, Simkins, & Davis-Kean, 2006; Ryan & Deci, 2000, 

2020). Researchers have shown that physically interacting with robots can impact 

intrinsic motivation (Apiola et al., 2010). Likewise, problem-solving, as found in the 

challenges, has been shown to impact intrinsic motivation (Kucuk & Sisman, 2018). 

Career motivation is an idea that posits that learners who demonstrate motivation 

in a subject see that subject’s relevance to their future careers (Arwood, 2004; Glynn, 

Taasoobshirazi, & Brickman, 2009). Career motivation aligned with the instructional 

portion of the lessons where participants were explained how to write programs and how 

programming concepts could be integrated into their future teaching.  

Self-determination has been defined by Black and Deci (2000) as the control 

learners have over their learning. Similarly, self-efficacy is described as students’ 

confidence in their ability to achieve the learning task (Bandura, 1997; Lawson, Banks, & 
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Logvin, 2007). Self-determination is brought about through confidence-building (Ryan & 

Deci, 2000, 2020), and self-efficacy is brought about through learners experiencing 

success (Bandura, 1997). These two categories of motivation aligned with the learning 

activities and challenges in the lessons, which could boost learners’ confidence through 

success. 

Motivation to Integrate Programming into Teaching (MTIPIT) was built on 

previous research about teacher motivation, which included a combination of intrinsic, 

extrinsic, and altruistic factors (Brookhart & Freeman, 1992; Han & Yin, 2016; Sinclair, 

2008). MTIPIT encompassed learners’ feelings about including programming instruction 

and activities in their professional teaching, built through their experiences with all the 

different aspects of the programming lessons (Brookhart & Freeman, 1992; Han & Yin, 

2016; Sinclair, 2008).  

The units of the Programming Motivation Survey were aligned to the various 

aspects of the lesson plans, as delineated in Table 3.3.  

 

Table 3.3. Programming Motivation Survey Subscale and Lesson Aspect Alignment 

 

Subscale Lesson Aspect 

Intrinsic Motivation  Using robots 

Learning activities 

Challenges 

  
Career Motivation Programming instruction 

Lectures on programming integration  

 

Self-Determination Learning activities 

Challenges 
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Table 3.3. Programming Motivation Survey Subscale and Lesson Aspect Alignment 

Continued. 

 

Subscale Lesson Aspect 

Self-Efficacy Learning activities 

Challenges 

 

MTIPIT Programming instruction 

Lectures on programming integration  

Using robots 

Learning activities 

Challenges 

 

Basic Procedures 

The first week focused on basic programming procedures. In this unit, 

participants became familiar with how programs are composed. As outcomes of these 

lessons, their associated activities, and challenges, participants were able to test and 

debug a program, create functioning programs, calculate values for programs, and used 

three different methods of programming to solve a problem. Table 3.4 details the 

alignment of the lesson plans to state standards, and the course’s student learning 

outcomes.  

 

Table 3.4. Basic Procedures Lesson Plan Alignment 
 

Lesson Plan SC State Computer 

Science Standard 

Lesson Objectives 

Basic Procedures Class 1 

 

Standard 1: Recognize that 

many daily tasks can be 

described as step-by-step 

instructions (i.e., 

algorithms). 

 

Standard 4: Develop a 

program to express an idea 

or address a problem 

 

Test and debug a program 

 

Create a functioning 

program 
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Table 3.4. Basic Procedures Lesson Plan Alignment Continued. 

 

Lesson Plan SC State Computer 

Science Standard 

Lesson Objectives 

Basic Procedures Class 2 Standard 1: Recognize that 

many daily tasks can be 

described as step-by-step 

instructions (i.e., 

algorithms). 

 

Standard 4: Develop a 

program to express an idea 

or address a problem 

Calculate values for a 

program  

 

Use different methods of 

programming to solve a 

problem 

 

During the first class of the Basic Procedures unit, participants were familiarized 

with the syntax of the programming language and given step-by-step instructions for 

writing programs with different methods in the EV3-G block-based programming 

language. The instructor highlighted the functionality and customizability of each type of 

programming block throughout the presentation. Instructional possibilities and curricular 

connections with science and math were highlighted. The instructor demonstrated 

programming functions on an example robot. Participants were instructed to follow along 

throughout the training and write and execute programs, as shown by the instructor when 

appropriate. The instructor demonstrated a basic debugging process. Then, participants 

were given free time in their pairs to experiment with the robots and become comfortable 

with programming them. As an exit ticket for dismissal, participants shared one discovery 

their pair made while programming their robot during the experimentation time. More 

details on this class period’s activities are in a lesson plan, as Figure A.1 in Appendix A. 

In the next class period, the formal in-class robotics programming activities 

began. Participants were introduced to odometry and calculating values for their 

programs. Participants learned how odometry could be used to solve problems. Pairs of 
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participants first used trial and error and then used odometry in their programs. Once 

participants completed the odometry activity, they were given a challenge. For this 

challenge, they were instructed to program their robots to travel one meter using three 

different programming methods. Their programs must move the robots based on (1) an 

amount of time, (2) revolutions, and (3) degrees. For full details on this class period, see 

the lesson plan located in Figure A.2 in Appendix A. An example solution for the One 

Meter Challenge is available as Figure A.3 in Appendix A. 

Advanced Procedures 

The second week focused on more advanced programming procedures. In this 

unit, participants became familiar with more customized programs designed to 

accomplish specific tasks. As outcomes of these lessons, their associated activities, and 

challenges, participants were able to predict the outcome of a program, modify a simple 

program, and create a program to solve a problem. Table 3.5 details the alignment of the 

lesson plans in this unit to state standards and course student learning outcomes.  

 

Table 3.5. Advanced Procedures Lesson Plan Alignment 

 

Lesson Plan SC State Computer Science 

Standard 

Lesson Objectives 

Advanced Procedures 

Class 1 

Standard 1: Design, evaluate, 

and modify simple 

algorithms (e.g., steps to 

make a sandwich; steps to a 

popular dance; steps for 

sending an email). 

Predict the outcome of a 

program  

 

Modify a simple program  
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Table 3.5. Advanced Procedures Lesson Plan Alignment Continued. 

 

Lesson Plan SC State Computer Science 

Standard 

Lesson Objectives 

Advanced Procedures 

Class 2 

Standard 3: Decompose 

problems into subproblems 

and write code to solve the 

subproblems (i.e., break 

down a problem into smaller 

parts). 

Predict the outcome of a 

program 

 

Create a program to solve 

a problem 

 

 

The first class of the Advanced Procedures unit focused on more difficult 

programming, including turning. Participants were introduced to pseudocode. Then, 

participants were presented with step-by-step instructions for writing programs for 

turning the robots using the block-based programming editor and the EV3-G 

programming language. The instructor highlighted the functionality and customizability 

of each type of programming block throughout the presentation, as well as instructional 

possibilities and curricular connections. The instructor demonstrated the different 

programming functions for turns on an example robot. Based on given program 

examples, participants predicted the outcome of programs before they were performed by 

the robot. Participants wrote more advanced programs to make their robots follow lines 

through courses designed with colored tape, as illustrated in Figure 3.1. After this 

instruction, pairs worked on a learning activity in which they modified a given program 

in order to move their robots around the box that their robots came in. For full details on 

this class period, see the lesson plan located in Figure A.4 in Appendix A. For a potential 

programming solution to the challenge for this lesson, see Figure A.5 in Appendix A. 
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Figure 3.1. Line following activity 

 

 

The second class of the Advanced Procedures unit began with a pseudocode 

warmup activity. In this activity, students designed paper airplanes and then wrote 

instructions for a partner to create an identical model. Throughout this activity, 

participants learned how exact their algorithms needed to be for the computer to execute 

them when they are writing advanced programs properly. The next part of the class 

period revolved around a challenge. To begin, the instructor led the students in a 

pseudocode demonstration for following a path. Then, the challenge was introduced. In 

the challenge, pairs programmed their robots through a maze made from electrical tape. 

Before placing their robot in the maze, partners were required to write their programs 

from a schematic and calculations lens, as shown in Figure 3.2. Once partners showed the 

instructor their program, they could run it in a maze and make necessary modifications. 

There were multiple copies of the maze set up on the floor throughout the classroom and 

neighboring hallway, as displayed in Figure 3.3, so multiple pairs of students could share 
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each maze in order to ensure efficiency. For full details on this class period, see the 

lesson plan located in Figure A.6 in Appendix A. A schematic for the maze is available in 

Appendix A as Figure A.7. 

 

 

Figure 3.2. Partners write a maze program. 
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Figure 3.3. Participants test their programs in the mazes. 

 

Control Structures 

The third week of the robotics intervention focused on the programming of 

different control structures. In particular, the participants were introduced to 

programming loops and if/then statements. As outcomes of these lessons, their associated 

activities, and challenges, participants were able to predict the outcome of programs, 

create programs using control structures, and modify programs using control structures. 
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Table 3.6 details the alignment of the lesson plan to state standards and course student 

learning outcomes.  

 

Table 3.6. Control Structures Lesson Plan Alignment 

  

Lesson Plan SC State Computer Science 

Standard 

Lesson Objectives 

Control Structures 

1 

Standard 2: Use and 

compare simple coding 

control structures (e.g., if-

then, loops). 

Predict the outcome of a 

program that uses control 

structures 

  

Create a program using control 

structures  

 

Control Structures 

2 

Standard 2: Use and 

compare simple coding 

control structures (e.g., if-

then, loops). 

Modify a simple program using 

control structures 

 

Create a program using control 

structures  

 

During the first class of the Control Structures unit, participants were presented 

with information on what control structures are and how they control the flow of 

programs. Then, participants were given step-by-step instructions for writing loops into 

programs using the block-based programming editor. The instructor highlighted the 

functionality and customizability of different types of loops throughout the presentation. 

Instructional possibilities for looping and curricular connections for control structures, in 

general, were identified. The instructor demonstrated the different programming 

functions on an example robot, and participants predicted the actions of the robot based 

on the given loops in the program. The learning activity for this unit required pairs to 

program their robots to move in a slithering motion, making a hissing sound at the end of 

the program after the required loops. For full details on this class period, see the lesson 
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plan located in Figure A.8 in Appendix A. An example programming solution to the 

Slithering One Meter Challenge is available as Figure A.9 in Appendix A. 

In the second class of the Control Structures unit, the instructor reinforced the 

utilization of control structures by providing more details on loops and if/then statements. 

Videos on different programming connections to different subjects were shared by the 

instructor. Then, the Lap Loop Challenge was given to participants. In this challenge, 

pairs modified their Lap Activity programs by deleting superfluous programming, which 

could be written in a more succinct fashion with loops. The objective was to modify their 

programs in order to successfully move their robot around their box three times using the 

loop, playing a different sound after each loop was completed. For full details on this 

class, please see the lesson plan located in Figure A.10, and the potential solution to the 

Lap Loop Challenge demonstrated in Figure A.11 in Appendix A. 

Variables 

The fourth week of the robotics intervention focused on how variables were used 

in programming. Participants learned that variables are containers for changing value 

information in programs. This unit also introduced the color sensor. As outcomes of these 

lessons, their associated activities, and challenges, participants were able to predict the 

outcome of a program based on given variables, create a program using variables, and 

modify a program using variables. Table 3.7 details the alignment of the lesson plan to 

state standards and course student learning outcomes. 
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Table 3.7. Variables Lesson Plan Alignment 

 

Lesson Plan SC State Computer Science 

Standard 

Lesson Objectives 

Variables Class 1 Standard 5: Identify variables and 

compare the types of data stored as 

variables. 

Predict the outcome of a 

program based on the 

given variables. 

 

Create a program using 

variables. 

 

Variables Class 2 Standard 4: Design and code 

programs to solve problems 

 

Standard 5: Identify variables and 

compare the types of data stored as 

variables. 

Create a program using 

variables. 

 

Modify a program using 

variables. 

 

The first class of the Variables unit began with an overview of the color sensor. 

First, the instructor demonstrated how the color sensor was used. Participants were 

presented with step-by-step instructions for writing programs using variables inside 

if/then statements in the block-based programming editor. The instructor highlighted the 

functionality of the color sensor and how it could be used with the different types of 

programming blocks related to variables, like the variables block, the math block, and the 

read numeric and write numeric settings. Throughout the presentation, curricular 

connections and instructional possibilities were shared. The instructor demonstrated the 

color sensor on an example robot. Then, pairs wrote programs utilizing the color sensor 

that scanned colors, incrementing a variable each time a predetermined color was 

detected by the sensor. The instructor then introduced the Red Light Activity. In the 

learning activity, pairs programmed their robots to speed up when the color sensor detects 

blue (increasing the speed variable each time), and stop the robot when the color sensor 

detects red. For full details on this class, see the lesson plan located in Figure A.12 in 
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Appendix A in addition to the schematic for the Red Light Activity available in Figure 

A.13. 

For the final robotics class, the Variables unit’s Color Maze Challenge was 

shared. For this challenge, the mazes utilized in the Maze Challenge were modified. Red 

pieces of tape were added to the mazes at points where the robots needed to turn right. 

Green pieces of tape were added to the mazes at points where the robots needed to turn 

left. The criteria for the Color Maze Challenge stipulated that every time the robots 

encountered a red line, they turned right and every time they encountered a green line 

they turned left and increment a variable by one on the Lego EV3’s screen using a 

variable and the formula (x + 1). The walls of the maze and the finish line were made of 

black tape, so the robots needed to be programmed to stop if they detected the black tape. 

Students completed this activity when they successfully navigated their robots to the end 

of the maze using programming, which utilized movement, control structures, and 

variables. For more details, see the lesson plan located in Figure A.14 in Appendix A. A 

schematic for this maze is included in Appendix A as Figure A.15. An example solution 

for this challenge is also available in Figure A.16 in Appendix A. 

Data Collection Methods and Data Sources 

Multiple sources of data were utilized to inform the results of this study. These 

sources were (1) Programming Comprehension Assessment, (2) Programming 

Motivation Survey, (3) field notes, and (4) individual interviews. Each research question 

and its associated data sources are represented in Table 3.8. The data sources used in this 

study are described in detail in the paragraphs below. 
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Table 3.8. Research Questions and Data Sources Alignment 

 

Research Questions Data Sources 

RQ#1: What is the effect of educational 

robotics on preservice teachers’ 

comprehension of programming concepts?  

Pretest and posttest Programming 

Comprehension Assessment 

 

  
RQ#2: How and to what extent does 

educational robotics influence preservice 

teachers’ motivation related to programming? 

Pre-instructional and post-

instructional Programming 

Motivation Survey 

 

Field notes 

 

Individual interviews 

 

Programming Comprehension Assessment 

 To assess the construct of programming comprehension, participants completed 

the researcher-created pretest and posttest Programming Comprehension Assessment 

found in Appendix B once before the intervention began, and once immediately after the 

intervention concluded. The pretest and posttest data allowed me to determine 

participants’ comprehension of programming concepts. The assessment was constructed 

of 20 questions and divided into four subsections with five questions each. Each of the 

subsections was aligned to the four units of instruction: (1) Basic Procedures, (2) 

Advanced Procedures, (3) Control Structures, and (4) Variables. As demonstrated in 

Appendix C, each question was aligned to a South Carolina Computer Science and 

Digital Literacy Standard (South Carolina Department of Education, 2017) as well as a 

lesson objective from each lesson.  

The questions prompted participants to read, debug, differentiate, problem-solve, 

and arrange portions of programs. The first five questions focused on basic procedures in 

programming. For example, participants were asked to arrange pieces of a program so 
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that the program worked and successfully moved the robot. In the Advanced Procedures 

subsection, participants were asked to predict the outcome of a program, modify a 

program, or create a program that solved a problem using blocks of programming that 

included turns. For example, participants were asked to predict where a robot running a 

given program would end in relation to its starting location after executing the given 

program. The next subsection aligned with the Control Structures unit of instruction. This 

subsection focused on utilizing loops and if/then statements to build programs. For 

example, participants were asked to simplify a program using loops. In this section, for 

example, participants were asked to choose the string of programming which included 

variables to produce the desired results. Each question was graded on a nominal scale as 

either correct or incorrect (Devlin, 2017). Each correct answer was worth one point for a 

total of 20 possible points. The Programming Comprehension Assessment was designed 

to take about 30 minutes to complete. The instrument was validated by two experts in 

programming and robotics (see the full feedback from each reviewer in Appendix D). 

One expert was part of the team that created the South Carolina K-8 computer science 

standards while the other is a physics professor and president of a state-wide Lego 

robotics league. Through the validation process, updates were made to the Programming 

Comprehension Assessment based on the experts’ suggestions. An example of such 

feedback is exhibited in Figure 3.4. For the result of this feedback, review question #18 in 

the final Programming Comprehension Assessment in Appendix B. 

 

 

Figure 3.4. Example feedback from expert. 
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Programming Motivation Survey 

The Programming Motivation Survey (Appendix E) was given before and after 

instruction. It was designed using a combination of intentionally and carefully selected 

statements from an existing valid and reliable instrument in addition to researcher-

designed statements. The 25-item Likert type scale Programming Motivation Survey was 

adapted from the Science Motivation Questionnaire II (SMQ-II) created by Glynn et al. 

(2011). Reliability testing was conducted on the SMQ-II (Glynn et al., 2011) with 340 

college student participants. The Cronbach’s alpha of the SMQ-II (Glynn et al., 2011) is 

.92, which indicated a very good reliability score (DeVellis, 2003).  

The Programming Motivation Survey had five subscales which are displayed in 

Table 3.9: (1) Intrinsic Motivation, (2) Career Motivation, (3), Self-Determination, (4) 

Self-Efficacy, and (5) Motivation to Integrate Programming into Teaching. The subscale 

of grade motivation from Glynn et al.’s (2011) instrument did not fit this study and was 

removed. In its place, a researcher-created subscale entitled “Motivation to Integrate 

Programming into Teaching” was added, which included five statements. In total, 15 of 

20 statements from the SMQ-II’s (Glynn, 2011) subscales of intrinsic motivation, career 

motivation, self-determination, and self-efficacy were adapted to focus on programming. 

The five statements from the subscales I adapted from the SMQ-II that did not fit the 

focus of the study were replaced with researcher-created statements (Appendix F). After 

the adaptations were made, the instrument was reviewed by three experts in the fields of 

programming and education. 

Participants responded to items such as “Understanding programming will benefit 

me in my career” on a five-point Likert type scale from (1) strongly disagree, to (5) 

strongly agree. As advised by DeVellis (2003), the statements participants responded to 
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were straight-forward in meaning and mixed in random order. Nine demographic 

information questions accompanied the Likert scale motivation items. These 

demographic questions gave context to the results and provided descriptive statistics on 

participants’ age, gender, classification, concentrations within the education major, as 

well as previous experience with programming and robotics. Results were analyzed with 

either paired sample t-tests or Wilcoxon signed-ranks tests depending on their normality 

in order to compare the pre-survey and post-survey sets of data from the same 

participants (Mertler, 2017). The Cronbach’s alpha for the Programming Motivation 

Survey in pre- (α = .963) and post- (α = .938) surveys indicated a very good reliability 

(DeVellis, 2003). 

 

Table 3.9. Programming Motivation Survey Subscale Alignment 

 

Statement Subscale 

3. Learning programming is interesting. 

17. I am curious about advancing my programming skills. 

1. Programming is relevant to my life. 

12. Learning programming makes my life more meaningful. 

19. I enjoy learning programming. 

  

Intrinsic 

Motivation 

7. Learning programming will help me get a good job. 

13. Understanding programming will benefit me in my career. 

10. Knowing programming will give me a career advantage. 

25. I will use programming problem-solving skills in my career. 

23. My career will involve programming. 

  

Career 

Motivation 

5. I put enough effort into learning programming. 

11. I spend a lot of time learning programming. 

6. I use various strategies to learn programming well. 

20. I look for additional resources to improve my skills when 

learning programming. 

16. I concentrate fully on what I do when I work on programming 

activities.  

Self-

Determination 
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Table 3.9. Programming Motivation Survey Subscale Alignment Continued. 

 

Statement Subscale 

9. I am confident I will do well on programming tests. 

4. I am confident in learning programming. 

15. I believe I can master programming knowledge and skills.  

14. I am confident I will do well on programming activities. 

24. I can write advanced programs.  

  

Self-Efficacy 

22. I can teach programming in my future courses. 

21. I enjoy teaching programming to others. 

18. I plan to incorporate programming into my teaching. 

2. Teaching programming would benefit my students. 

8. Programming activities will enhance my students’ learning. 

MTIPIT 

 

Field Notes 

 I maintained brief field notes during each class session. Field notes have been 

described as essential for rigorous qualitative research and offer an extra layer of detail 

with which to aid in the construction of thick, rich descriptions (Creswell, 2017; Phillippi 

& Lauderdale, 2018). When I was not teaching or providing scaffolding to participants, 

observations related to motivation and behavioral engagement (Fredricks et al., 2004; 

Kim et al., 2015, 2017; Skinner et al., 2009) were recorded. Examples of such 

observations included students voicing excitement and frustration programming the 

robots. Teamwork dynamics between partners were also recorded. For example, there 

were notes of when one participant within a team was noticeably more engaged with 

programming the robot than the other. Special notes were made for participants’ 

absences, computer issues, and robot malfunctions. These notes were written in a 

composition book and coded in Delve and Microsoft Word. 
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Individual Interviews 

 Individual interviews were selected as a data collection method because they 

provided descriptive qualitative data of participants’ perspectives on focused topics 

(Bloomberg & Volpe, 2016; Creswell & Poth, 2018; Mertler, 2017; Mills, 2018). 

Interviews, in this instance, gathered participants’ reflections upon their programming 

experience throughout the study. This interview data provided further elaboration on 

participants’ experiences, which may not appear in my field notes and quantitative survey 

data relative to the study’s second research question (Creswell, 2014; Creswell & Poth, 

2018). 

Purposeful sampling was used to select participants for the interviews. One third 

of the participants (n = 6) were purposefully selected for individual interviews about their 

experiences within the intervention. Interviewees were selected based on my observations 

of participants’ behavioral engagement (Fredricks et al., 2004; Kim et al., 2015, 2017; 

Skinner, Kindermann, & Fuller, 2009) that were recorded as field notes. Two participants 

representing high, medium, and low behavioral engagement were selected for individual 

interviews in order to have a balanced population of interviewees. High behavioral 

engagement was exhibited as on-task behavior, deep involvement, and active 

participation (Fredricks et al., 2004; Skinner et al., 2009; Stipek, 2002). For example, 

Paula demonstrated high engagement in all programming challenges and would actively 

contribute toward classroom activities and helping other groups. Medium behavioral 

engagement was intermittent, episodic on-task behavior and mild participation (Fredricks 

et al., 2004; Skinner et al., 2009; Stipek, 2002). For example, Randy demonstrated 

engagement, but with only some of the programming activities. He also demonstrated 
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only mild participation with his partner. Low behavioral engagement was exhibited by 

participants who were routinely off task and made minimal contributions to their partner 

or the class through participation (Fredricks et al., 2004; Skinner et al., 2009; Stipek, 

2002). For example, Jennifer was off-task and did not contribute towards the 

programming activities, as she let her partner do almost all the work.  

I followed the interview protocol found in Appendix G. The interview questions 

were each aligned to the second research question, and as displayed in Table 3.10, 10 of 

the interview questions were aligned to the motivation subscales evaluated in the 

Programming Motivation Survey, while two were designed to directly gather data with 

which to improve the curriculum. In each interview, I prompted the participant with 

open-ended questions that guided the discussion. Open-ended questions were used by me 

to capture the rich detail of participants’ attitudes and experiences (Creswell, 2017; 

Creswell & Poth, 2018; Morgan, 2018). After each question was presented to the 

participant, I listened to the participant’s response. The individual interviews followed a 

semi-structured protocol (Merriam & Tisdell, 2016; Mertler, 2017). The semi-structured 

nature of the interviews allowed the flexibility to put forward additional probes when 

appropriate in order to elicit more detail (Creswell, 2017; Mertler, 2017). Each interview 

took approximately 30 minutes. The interviews were audio-recorded and transcribed in 

real-time using Microsoft Dictate in Microsoft Word. Then, I reviewed the resulting 

transcripts for accuracy and made edits as needed. While reviewing the transcriptions, 

observations were noted in the researcher journal which helped provide a context in the 

analysis and coding of the transcript. 
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Table 3.10. Individual Interview Question Alignment 

 

Individual Interview Questions Alignment 

1. What aspects, if anything, interested you in the programming 

activities? 

Prompt: Can you explain what you found interesting about those 

programming activities? 

 

2. Tell me about your experiences with the programming activities 

in the course. 

Prompt: Which one(s) was(were) most enjoyable? Explain. 

Prompt: Which one(s) was(were) least enjoyable? Explain.  

Intrinsic 

Motivation 

 

 

 

Intrinsic 

Motivation 

 

3. How do you think learning programming will influence your 

career after graduation? 

 

Career 

Motivation 

4. In what ways do you believe learning programming would be 

valuable to you as a teacher? 

Prompt: How has your opinion changed since the beginning of this 

course? 

 

Career 

Motivation 

5. Can you tell me about a time when you felt learning 

programming was hard? 

Prompt: Why did you feel this way? 

Prompt: How did you overcome that situation?  

 

6. Tell me about a time you put in extra effort over the past four 

weeks to research additional resources to help you during the 

programming activities. 

Prompt: How did you make the decision to seek additional 

resources? 

Self-

Determination 

 

 

 

Self-

Determination 

 

7. Tell me about your current state of programming knowledge 

and skills? 

Prompt: How do you think it has changed since the beginning of 

this course? 

 

8. What are your feelings on learning even more advanced 

programming?  

 

Self-Efficacy 

 

 

 

 

Self-Efficacy 
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Table 3.10. Individual Interview Question Alignment Continued. 

 

Individual Interview Questions Alignment 

9. Where do you position yourself in the continuum of adding or 

not adding programming activities to your classes? Why?  
 

10. Tell me about your thoughts on how programming activities 

would fit into the grade level and subject area you will teach? 

Prompt: Describe an example programming activity for the grade 

or subject area you will be teaching. 

 

11. Which programming activities do you feel were effective in 

helping you learn programming? 

Prompt: What suggestions would you make to improve the 

programming activities in this course? 

 

MTIPIT 

 

 

MTIPIT 

 

 

 

 

Perception of the 

Curriculum 

12. Do you have any questions for me? N.A. 

 

Data Analysis 

Quantitative and qualitative data were analyzed (Creswell, 2014; Merriam & 

Tisdell, 2016). Using both quantitative and qualitative data removed the biases of only 

utilizing one type of data in order to show a more accurate picture of the phenomenon 

being investigated (Creswell, 2014; Mertler, 2017). As demonstrated in Table 3.11, each 

research question was investigated with different sources of data and different analysis 

methods. First, the quantitative and then the qualitative data analysis processes are 

described in the following paragraphs. 

 

Table 3.11. Research Questions, Data Sources, and Data Analysis Method Alignment 

 

Research Questions Data Sources Data Analysis Method 

RQ#1: What is the effect 

of educational robotics 

on preservice teachers’ 

comprehension of 

programming concepts? 

  

Programming 

Comprehension 

Assessment 

Descriptive statistics 

Paired sample t-tests 

Wilcoxon signed-ranks tests  
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Table 3.11. Research Questions, Data Sources, and Data Analysis Method Alignment 

Continued. 
 

Research Questions Data Sources Data Analysis Method 

RQ#2: How and to what 

extent does educational 

robotics influence 

preservice teachers’ 

motivation related to 

programming? 

Programming Motivation 

Survey 

 

 

Field notes 

 

Individual interviews 

Descriptive statistics 

Paired sample t-tests 

Wilcoxon signed-ranks tests 

 

Inductive analysis 

 

Inductive analysis 

 

Quantitative Data Analysis 

Student scores on the pre/post Programming Comprehension Assessment 

instrument were downloaded from Moodle as Microsoft Excel sheets and formatted for 

SPSS. Identification numbers were assigned to each participant. Participants who 

dropped out, non-education majors, and their associated data were removed prior to 

analysis. The data were uploaded into SPSS for data analysis. The students’ scores on the 

Programming Comprehension Assessments were arranged into units for each of the four 

topics covered in instruction and compared using paired sample t-tests for the parametric 

data and a Wilcoxon signed-ranks tests for the non-parametric data. The paired sample t-

tests and Wilcoxon signed-ranks tests were performed on the data in order to examine 

whether the intervention had an impact on students’ Programming Comprehension 

Assessment scores. These data were depicted in tables, including the overall scores and 

unit categories along. The tables were accompanied by a text description. 

 Quantitative data from the pre/post Programming Motivation Survey instrument 

were downloaded from Moodle as Microsoft Excel sheets and formatted for SPSS. 

Identification numbers were assigned to each participant. Participants who dropped out, 

non-education majors, and their associated data were removed prior to analysis. The data 
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were uploaded into SPSS for data analysis. Descriptive statistics were calculated at this 

time. Student responses to the Likert scale questions were analyzed within their pre-

determined subscales. Results were analyzed with either paired sample t-tests or a 

Wilcoxon signed-ranks test depending on their normality in order to compare the pretest 

and posttest sets of data from the same participants (Mertler, 2017). As suggested by 

Mertler (2017), an alpha level of .05 was utilized to ascertain if the intervention had a 

significant impact on their programming comprehension scores. The Cronbach’s alpha 

for this instrument’s pretest (α = .96) and posttest (α = .94) indicated a very good 

reliability (DeVellis, 2003).  

Qualitative Data Analysis 

Inductive analysis was used to analyze the qualitative data (Creswell, 2017; 

Mertler, 2017). In this study, qualitative data came from the individual interviews and 

field notes. All transcripts and coding files were stored in a password-secured folder. The 

transcriptions and field notes were broken down through an inductive system of open 

coding in the first cycle, and pattern coding in the second cycle. Strauss and Corbin 

(1990) described open coding as “the process of breaking down, examining, comparing, 

conceptualizing, and categorizing data” (p. 61). Pattern coding is a second cycle coding 

method in which the researcher takes the first cycle codes and groups them into 

categories of similar codes (Saldaña, 2016). The pattern codes were then developed into 

larger categories (Saldaña, 2016). The data were analyzed for themes in the individual 

interviews and field notes (Braun & Clarke, 2006; Creswell, 2017; Mertler, 2017). These 

themes centered on representing students’ perceptions about motivation related to 

programming and the educational robotics intervention. In this instance, the open coding 
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led to pattern coding, which developed categories that were used to pinpoint themes that 

emerged during the data analysis (Bloomberg & Volpe, 2016; Creswell & Poth, 2018; 

Mills, 2018).  

A coding web tool known as Delve and multiple Microsoft Word documents were 

used. As Creswell (2014) recommended, I recorded codes that were expected, surprising, 

or interesting related to the research question. Delve was used for the open coding of the 

data. Because Delve is limited in the movement and manipulation of open codes into 

pattern codes, the open codes were exported as a Microsoft Word document. Open codes 

were printed and sorted into pattern codes. Then, the open codes were moved to different 

Microsoft Word documents holding the different pattern codes that were generated. In 

new Microsoft Word documents, the pattern codes were aligned into umbrella categories. 

Then, themes were generated from these categories. The comments feature in Microsoft 

Word was used to keep notes on codes and the coding process. From this coding process, 

I reduced the qualitative data into a few of the most relevant categories depicting themes 

for sharing and further description (Creswell, 2014; Mertler, 2017). 

The thematic findings are represented in two different ways. First, a table 

depicting the different themes uncovered by the interviews is displayed. Second, thick, 

rich description with selected quotes from the individual interviews and field notes were 

used to weave together the description of the participants’ experiences relative to 

programming motivation. Interpretations of participants’ perspectives were presented to 

provide context. Further conversation comparing the results of the data analysis relative 

to research question two, followed in a discussion section. 
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Procedures and Timeline 

The timeline for the procedures for this research included three phases: (1) 

Introduction, (2) Robotics Intervention, and (3) Data Collection and Analysis. As 

demonstrated in Table 3.12, the three phases of the study take place over a total of 16 

weeks. Each phase is described in the paragraphs below.  

 

Table 3.12. Timeline and Procedures 

 

Phase 1: Introduction (1 week) 

Week 1 Getting Started 

Class 1 1. Explanation of study  

2. Informed consent 

3. Pre-Programming Comprehension Assessment and pre-

Programming Motivation Survey 

Class 2 1. Computer setup 

2. Robot setup 

3. Robot operation overview & troubleshooting 

Phase 2: Robotics Intervention (4 weeks) 

Week 2 Basic Procedures 

Class 1 1. Basic Procedures programming demonstration 

2. Free time to experiment with programming robots 

Class 2 1. Odometry Activity 

2. One Meter Challenge 

Week 3 Advanced Procedures 

Class 1 1. Pseudocoding lap demonstration 

2. Lap Activity 

Class 2 1. Pseudocoding maze demonstration 

2. Maze Challenge 

Week 4 Control Structures 

Class 1 1. Looping demonstration 

2. Slithering One Meter Activity 

Class 2 1. Flow control overview 

2. Lap Loop Challenge 

Week 5 Variables 

Class 1 1. Color sensor demonstration 

2. Red Light Activity 

Class 2 1. Variables overview 

2. Maze with Variables Challenge 

Phase 3: Data Collection & Analysis (11 weeks) 

Week 6 Data Gathering 
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Table 3.12. Timeline and Procedures Continued. 

 

 

Phase 1: Introduction 

There were actions that were completed before the study began. Institutional 

Review Board approval was gained from both my associated university (Appendix H) 

and the research site (Appendix I). Before the study began, steps were completed to 

prepare the participants for the study. The week before the Robotics Intervention phase 

began, there were two class periods dedicated to preparing the participants for the 

robotics lessons. The events of these two class periods will be described in this section. 

First, students were briefed on the study. In this briefing, the purpose of the study, 

procedures of the study, duration of the study, rights of participants, risks to participants, 

benefits to participants, confidentiality, and sharing of results were explained to students. 

Students were given time to ask questions and reflect upon their decision to participate or 

Class 1 1. Post-Programming Comprehension Assessment and post-

Programming Motivation Survey 

Class 2 2. Individual interviews 

Week 7 & 8 Interview Transcripts - Initial Analysis 

Independent 1. Review interview audio with transcripts for accuracy 

2. Review transcripts’ contents 

3. Member checking of transcripts 

Week 9 & 10 Comprehension Assessment Analysis 

Independent 1. Prepare data for SPSS 

2. Paired sample t-tests and Wilcoxon signed-ranks tests on 

comprehension data 

3. Reliability analysis 

Week 11 & 12 Motivation Survey Analysis 

Independent 1. Prepare data for SPSS 

2. Paired sample t-tests and Wilcoxon signed-ranks tests on 

motivation data 

3. Reliability analysis 

Week 13 – 16 Coding of Qualitative Data 

Independent 1. Rounds of coding and peer debriefing 

2. Categories and themes 
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not. It was explained to students that participating or not participating in this study would 

not influence their grades, and that participation was optional. At the conclusion of this 

introduction, informed consent was obtained from the participants. Students were given 

the research site university’s consent form and photography, video, and audio recording 

release form (Appendix J). Participants signed these two forms, and the forms were 

collected by me and stored in a secure location. The pretest Programming 

Comprehension Assessment and the pre-instructional Programming Motivation Survey 

were given to participants. To access these instruments, participants logged into the 

course webpage in Moodle and navigated down to the associated week. There 

participants found the Programming Comprehension Assessment pretest and pre-

instructional Programming Motivation Survey. Participants completed the pretest first, 

followed immediately by the pre-instructional survey. 

During the next class period, participants were familiarized with the robots and 

programming software. Participants were paired and given a robot and laptop. Then, the 

pairs followed the instructor through the process of how participants were to connect the 

laptop to the robot using Bluetooth. Then, the instructor described the different parts of 

the robots. The instructor showed students the different motors and sensors of the robots 

in a presentation. The functions of each type of motor and sensor were explained. 

Instructional time was dedicated to showing the participants how to freeze the robot in 

situations where the robot goes awry. Then, participants were shown how to troubleshoot 

problems that may occur with the robots. To finish this class period, the instructor 

showed participants the different sections of the programming software. Participants 

followed along with the instructor on their laptops. The instructor demonstrated the 
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programming canvas, the programming palettes, and the hardware tab. This basic 

overview concluded the first week’s activities. 

Phase 2: Robotics Intervention 

Phase 2 was divided into four week-long units. Each week/unit contained two 

class periods of 1.25 hours for a total of 2.50 hours of instructional time per week/unit. 

The basic structure of each unit was the same. Each unit began with an instructor-led 

overview of the concepts in the unit, including context and curricular integration ideas, 

and taught participants robotics programming concepts. Participants then practiced the 

new programming concepts through learning activities. Finally, participants completed 

programming challenges to finish each unit.  

Participants began with the Basic Procedures unit. The first class of this unit 

consisted of a basic overview of programming and a programming demonstration. After 

that, participants had free time to experiment with programming the robots. In the second 

class of the unit, participants took part in an odometry learning activity and then the One 

Meter Challenge. Next, participants moved on to the Advanced Procedures unit. The first 

class of this unit consisted of a pseudocoding demonstration and the Lap Activity. The 

second class of this unit began with a pseudocoding activity for following a path and 

ended with the Maze Challenge. Then, participants took part in the Control Structures 

unit. The first class of this unit started with a looping demonstration and ended with the 

Slithering One Meter Activity. The second class of this unit started with a control 

structures overview which explained loops and if/then statements and ended with the Lap 

Loop Challenge. Finally, participants completed the Variables unit. The first class of this 

unit began with a color sensor demonstration and ended with the Red Light Activity. The 
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second class of this unit began with an overview of variables and ended in the Maze with 

Variables Challenge. 

Phase 3: Data Collection and Analysis 

In the first part of this phase, participants took the same Programming 

Comprehension Assessment and then the Programming Motivation Survey that they had 

taken previously. The instruments were again available in Moodle, the participants’ 

course management system. The next part of this phase required me to obtain qualitative 

data through individual interviews. The audio from each of these recordings was 

transcribed with Microsoft Dictate and loaded into Microsoft Word. The cleaned 

transcripts were shared with the interviewees for member checking. The transcripts were 

then reviewed by me in order to become familiarized with the content. The transcripts 

along with the field notes were then uploaded into Delve for coding and inductive 

analysis. Descriptive statistics, paired sample t-tests, and Wilcoxon signed-ranks tests 

were then performed on the pre/post results of each instrument. The transcripts were 

coded, and themes were gathered from the data. Finally, participants had the opportunity 

to critique the findings of this study.  

Rigor and Trustworthiness 

Researchers must communicate the actions they have taken to assert the rigor and 

trustworthiness of their findings (Creswell, 2014). There were five strategies employed 

by me to ensure the rigor and trustworthiness of the qualitative data in this study. The 

strategies that were used to confirm rigor and trustworthiness in this study are (1) 

triangulation, (2) member checking, (3) peer debriefing, (4) audit trail, and (5) thick, rich 

description. These strategies are detailed in the following paragraphs. 
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Triangulation 

Methodological triangulation is the most evident strategy used to ensure rigor and 

trustworthiness for this study. Methodological triangulation united data from mixed 

sources and methods (Buss & Zambo, 2014; Creswell, 2014; Patton, 2002). The mixing 

of quantitative survey data on motivation, qualitative field notes, and qualitative 

individual interview response data about motivation constituted the mixed methods for 

research question #2. These mixed sources created a dialogue between the different 

perspectives offered through the disparate ways of investigating the phenomenon 

(Maxwell, 2010). After all data were collected and the data sources were analyzed 

individually, these results were then compared to corroborate findings from each different 

methodology, ensuring consistency (Bazeley, 2013; Creswell, 2014).  

Member Checking 

As this study was conducted through the scope of action research, a collaborative 

member checking process was used. Multiple rounds of member checking were used in 

this study. Member checking ensures trustworthiness by allowing stakeholders to verify 

the accuracy of the findings (Creswell, 2014; Merriam, 1998; Mertler, 2017). The first 

member checking occurred after the individual interviews. Participants were presented 

with the transcripts of their individual interviews through email. Each email was kept on 

a separate email chain for each participant as to preserve anonymity. I inquired if the 

transcripts were reflective of what the participants meant during the individual 

interviews. Participants had the opportunity to critique or correct me during this time to 

further establish the trustworthiness of the results (McMillan, 2016; Mills, 2018). No 

inaccuracies were reported by participants, and three of the six interviewees confirmed 
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their transcripts’ accuracy, while the other three did not respond. The themes and 

categories created were then shared with the participants after the data were coded and 

analyzed. Again, participants were asked to critique or correct the themes and categories. 

The accuracy of the themes and categories was confirmed by three of the six 

interviewees, but no additional insights were provided. The other three interviewees did 

not respond. 

Peer Debriefing 

Peer debriefing has been described by Lincoln and Guba (1985) as a discussion 

with the goal of examining the methodological process, exploring unrealized possibilities 

in the study, as well as checking and defending the study’s findings or interpretations. 

According to Shenton (2004), peer debriefing with other academics offers “the fresh 

perspective that such individuals may be able to bring” which can “challenge 

assumptions made by the investigator” who may become too close to the subject matter 

to see opportunities for the study’s refinement (p. 67). Creswell (2014) echoed this notion 

by explaining that including the perspectives of other academics to review a study acts as 

an external evaluation on the rigor and trustworthiness of the methods and interpretations 

of results. Peer debriefing with my dissertation chair was used to ensure all methods were 

fundamentally sound, and all interpretations were justified and accurate. Throughout the 

study, instruments, data, codes, themes, and interpretations were constantly shared and 

reviewed with the dissertation chair. From peer debriefing insights, the study was refined, 

and the accuracy of results were improved, adding credibility to the results (Bloomberg & 

Volpe, 2016; McMillan, 2016). 
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Audit Trail 

The audit trail in this study consisted of a researcher journal that documented both 

reflections from the intervention as well as decisions that were made during the data 

analysis process (Creswell, 2017). An audit trail was used to document an ongoing record 

of events and decisions which occurred during the study and analysis (Lincoln & Guba, 

1985; Merriam, 1998). The researcher journal provided a linear timeline of thoughts and 

events germane to the intervention and data analysis aspects of the study. The insights 

within my field notes on each class session were incorporated into the researcher journal 

and elaborated upon. In addition, reflections on the lessons and summarizations of 

experiences were written immediately following each class session. These passages were 

used to provide context when reporting the results of the study. Further, I used the 

researcher journal to remember what was previously done and what needed to be done 

while working through the data analysis phase. For example, I made notes about which 

codes were used and why during the thematic analysis of the interview data. In this way, I 

ensured that there was a written record that supported the thought process behind each 

code. In turn, these thought processes and decisions could be shared in the dissertation. 

The researcher journal was an ongoing document written in Microsoft Word. 

Thick, Rich Description 

Thick, rich descriptions were detailed, illustrative accounts that enabled the reader 

to better understand the study (Bazeley, 2013; Creswell, 2014; Mertler, 2017). These 

detailed descriptions allowed the reader to make analyses and begin to draw conclusions 

(Lincoln & Guba, 1985; Merriam, 1998). In this study, interview responses as well as 

field notes explaining the phenomena were described and interpreted. The perspectives of 
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the participants were woven into the thick, rich description to add authenticity and 

support to my inferences. These thick, rich descriptions of the study provided context to 

the reader.  

Plan for Sharing 

The results of this study were shared with various audiences. In each of the 

methods of sharing, copies of the quantitative and qualitative data that were included in 

each presentation or report were devoid of any identifying characteristics. Information 

was reported in aggregate, and student pseudonyms in the form of study-specific 

identification numbers were used for specific examples in order to “limit descriptions of 

individuals” to the point that “they are not easily identifiable” (Mertler, 2017, p. 271). 

The results of this study were presented to (a) the study’s participants, (b) the university’s 

Instructional Technology department, (c) readers of peer-reviewed journals, and (d) 

attendees of international and national professional conferences. The methods for sharing 

findings with each of these audiences will be described in the paragraphs below. 

Participants 

The results of the study were shared with participants through a visual 

presentation given by me. This presentation occurred after the member checking of the 

themes of the study. Participants were given the opportunity to comment on the findings 

in accordance with the action research model wherein participants are collaborators 

(Creswell, 2014; Mertler, 2017). All questions were answered, and reflections were made 

during this time.  
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The University’s Instructional Technology Department 

The professional stakeholders that are part of the Instructional Technology 

department all met in the Instructional Technology meeting area. I provided a visual 

presentation as well as a hard-copy report of the study to the department. This report 

included an outline of the study’s instructional modules, data, findings, as well as a list of 

suggested updates and improvements. All professional stakeholders collaborated on 

brainstorming additional updates and improvements to the programming instruction and 

documented action steps for updating the instructional modules.  

Readers of Peer-Reviewed Journals 

Articles related to this study’s research questions will be written. These articles 

will be derivative of the dissertation’s contents. I will segment the dissertation into 

different pieces to report the results. Potential journals will be selected based on the 

advisement of my chair. Although action research is not widely generalizable, the 

findings of this dissertation will help add to the scarce literature available to academics 

and practitioners related to preservice teachers learning programming through robotics. 

Attendees of Professional Conferences 

The results of this study will also be shared at educational technology 

conferences. A presentation of selected findings is planned for an international 

conference within the year of the dissertation’s successful defense. Other international 

and national presentations will be planned upon successful defense at the 

recommendation of my chair. 
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CHAPTER 4 

 ANALYSIS AND FINDINGS

The purpose of this action research was to evaluate the effect of educational 

robotics on the programming comprehension and motivation of preservice teachers at a 

medium-sized liberal arts university in the southeastern United States. The findings from 

this study will aid in understanding the impact of educational robotics on preservice 

teachers’ comprehension and motivation related to programming before they begin their 

professional practice. The data collection in this study was aligned to two research 

questions: 

1. What is the effect of educational robotics on preservice teachers’ comprehension 

of programming concepts? 

2. How and to what extent does educational robotics influence preservice teachers’ 

motivation related to programming? 

This chapter provides evidence of comprehension and motivation that were 

gathered from participants during data collection. Of the eligible 21 education majors 

taking the course, three participants dropped out of the class during the study. These 

participants’ data were removed prior to analysis. This analysis only included the pre/post 

Programming Comprehension Assessment and Programming Motivation Survey data 

from the remaining 18 participants.  

This chapter is divided into two sections representing the mixed methods used in 

this study. The quantitative section reports the pre/post results of the Programming 
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Comprehension Assessment and the Programming Motivation Survey as well as 

subsequent data analysis on the participants’ responses. The qualitative section 

documents the findings based on the analysis of the individual interviews. The 

quantitative results will be reported first in this chapter, followed by the qualitative 

results. At the end, those two sources of findings will be integrated. 

Quantitative Analysis and Findings 

This section provides the quantitative results from the instruments utilized in this 

study. Data were collected before and after the educational robotics intervention using 

two instruments: (1) Programming Comprehension Assessment and (2) the Programming 

Motivation Survey. The data presented in this section include participants’ overall pre 

and post results as well as the data for each respective unit or subscale within each 

instrument. First, the pre/post Programming Comprehension Assessment results will be 

presented, followed by the pre/post Programming Motivation Survey results. 

Programming Comprehension Assessment 

The Programming Comprehension Assessment was given to participants before 

and after the educational robotics programming intervention. The instrument was 

evaluated by two experts in block-based programming and educational robotics to 

establish face validity (Salkind, 2010). The Programming Comprehension Assessment 

included 20 multiple choice questions grouped into four units of five questions 

representing each of the instructional units in the intervention (Basic Procedures, 

Advanced Procedures, Control Structures, and Variables). Each multiple-choice question 

had five answer choices. There was only one correct answer per question. Each question 
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had one point possible for a total possible score of 20 points. Each unit had a total 

possible score of five points. 

Descriptive statistics. First, the data were analyzed using descriptive statistics, 

and an item difficulty analysis was run based on the participants’ average scores on the 

Programming Comprehension Assessment. From the pretest (M = .21, SD = .07) to the 

posttest (M = .58, SD = .24), participants’ overall programming comprehension 

improved.  

An item difficulty analysis, shown in Table 4.1, displays the difficulty of each 

question on the Programming Comprehension Assessment. Difficulty index values were 

calculated. Item difficulty levels in this study were equal to the percentage of participants 

who answered the items correctly, or the items’ mean scores (Lord, 1952). Difficulty 

index values varied between .22 and .83, resulting in a mean difficulty index calculation 

of M = .58. According to Lord (1952), the difficulty for a five-response option multiple 

choice question with one correct answer choice is ideally .70. Hopkins and Antes (1990) 

noted that difficulty levels below .14 were very difficult, levels between .15 and .29 were 

difficult, levels between .30 to .70 were moderate, levels between .71 to .85 were easy, 

and levels from .86 and above were very easy. According to Hopkins and Antes’s (1990) 

difficulty levels, the Programming Comprehension Assessment included two difficult 

questions, 12 moderate questions, and six easy questions, with an overall moderate 

difficulty level (M = .58, SD = .24). In Table 4.1, the item difficulty and unit difficulty 

levels are equal to the means outlined. 
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Table 4.1. Item Difficulty – Programming Comprehension Assessment Posttest 

 

Units Question M SD 

Basic Procedures 

 

Q1 .83 .38 

Q2 .44 .51 

Q3 .83 .38 

Q4 .28 .46 

Q5 .56 .51 

 Basic Procedures Total  .59 .49 

Advanced Procedures 

 

Q6 .56 .51 

Q7 .78 .43 

Q8 .56 .51 

 Q9 .67 .49 

 Q10 .72 .46 

 Advanced Procedures Total .66 .48 

Control Structures 

 

Q11 .39 .50 

Q12 .72 .46 

Q13 .50 .51 

Q14 .44 .51 

Q15 .83 .38 

 Control Structures Total .58 .57 

Variables 

 

Q16 .61 .50 

Q17 .61 .50 

Q18 .44 .51 

Q19 .67 .49 

Q20 .22 .43 

 Variables Total .51 .49 

Total Programming Comprehension Assessment Difficulty .58 .24 

Note. Mean is equal to item difficulty. 

 

Participants’ scores in each of the units in the assessment representing the four 

different instructional units (Basic Procedures, Advanced Procedures, Control Structures, 

and Variables), as well as the total scores, were analyzed for the pretest and posttest. 

First, the Shapiro-Wilk test was used to evaluate the normality of the data. Based on 

those results, a paired sample t-test or a Wilcoxon signed-ranks test was used to analyze 

the data, respectively.  
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Shapiro-Wilk normality tests. The Shapiro-Wilk test was used to determine if 

the data were normally distributed for each unit as well as the total scores. To complete 

the Shapiro-Wilk tests, the participants’ pre and post average scores for each unit and 

overall total were calculated. Then, the differences between the pretest and posttest for 

each unit, as well as the overall total for the pretest and posttest, were calculated to create 

a new variable that represented the difference in scores between the pre and posttest. 

These differences were then analyzed using Shapiro-Wilk tests.  

Shapiro-Wilk test results with p values above .05 indicated that the data are 

normally distributed, while p values under .05 indicated that the data are not normally 

distributed (Gibbons & Chakraborti, 2011). The data (see Table 4.2) were found to be 

normally distributed for the units of Control Structures (p = .212) and Variables (p = 

.534), as well as the Total (p = .143) using the Shapiro-Wilk tests (p > .05). However, the 

units of Basic Procedures (p = .017) and Advanced Procedures (p = .042) were found to 

violate the normality assumption.  

 

Table 4.2. Shapiro-Wilk Normality Tests – Programming Comprehension Assessment 

 

Units W df p 

Basic Procedures Difference .87 18 .017* 

Advanced Procedures Difference .89 18 .042* 

Control Structures Difference .93 18 .212 

Variables Difference .96 18 .534 

Total Programming Comprehension Assessment Difference .92 18 .143 

Note. * Indicates not normally distributed data (p < .05) 

 

The next steps of the data analysis process were guided by the Shapiro-Wilk test 

results. Either the paired sample t-test or Wilcoxon signed-ranks test were used to analyze 



www.manaraa.com

 

110 

the data depending on their normality results from the Shapiro-Wilk test, as outlined in 

Table 4.3. The data for the units and total that were normally distributed were analyzed 

using paired sample t-tests and the data for the units that were not normally distributed 

were analyzed using Wilcoxon signed-ranks tests (Gibbons & Chakraborti; Pappas & 

DuPuy, 2004). Cohen’s d was calculated to determine the effect size for the change in 

each unit for the parametric data (Cohen, 1988). The effect size of the change in the non-

parametric test was reflected by the correlation coefficient r (Pallant, 2007; Rosenthal, 

1994). To minimize familywise Type 1 error inflation, the Bonferroni correction (Bland 

& Altman, 1995) level was calculated for the total number of tests conducted on the 

instrument (5). 

 

Table 4.3. Data Analysis Method Alignment Based on Normality of Data – Programming 

Comprehension Assessment 

 

Shapiro-Wilk Test Results Units Data Analysis 

Method 

Normally Distributed Control Structures 

Variables  

Total Programming Comprehension 

 

Paired sample t-test 

Not Normally Distributed 

 

Basic Procedures 

Advanced Procedures 

Wilcoxon signed-

ranks test 

 

Paired sample t-tests. Paired sample t-tests were conducted to compare 

participants’ scores on the Control Structures, Variables, and Total between pretest and 

posttest. The paired sample t-tests revealed that participants’ posttest scores were 

significantly higher than pretest scores. Participants’ comprehension of programming 

concepts increased from the pretest (M = .21, SD = .07) to the posttest (M = .58, SD = 

.24), t(17) = 6.48, p < .001, Cohen’s d = 1.53. Participants’ comprehension of control 
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structures increased from the pretest (M = .26, SD = .17) to the posttest (M = .58, SD = 

.26), t(17) = 4.68, p < .001, Cohen’s d = 1.10. Participants’ comprehension of variables 

increased from the pretest (M = .19, SD = .17) to the posttest (M = .51, SD = .32), t(17) = 

3.69, p < .001, Cohen’s d = .87. 

As demonstrated in Table 4.4, the overall increase in students’ total scores on the 

assessment from pretest to posttest was found to be statistically significant. The units of 

Control Structures and Variables also demonstrated significant increases from pretest to 

posttest. As demonstrated in Table 4.4, the effect size for this analysis was found to 

exceed Cohen’s (1988) convention for a large effect (d = .80) for these units in addition 

to the total. To minimize familywise Type 1 error inflation, the Bonferroni correction 

(Bland & Altman, 1995) level was calculated by dividing the desired alpha level of .05 

by total number of comparisons (5) to reveal a new significance threshold of p < .01. 

Both subscales and the total remained significant at the Bonferroni correction alpha level. 

Specifically, the results suggest that when preservice teachers learn programming through 

educational robotics, their comprehension of control structures, variables, and 

programming in general can be increased. 

 

Table 4.4. Paired Sample t-Tests – Programming Comprehension Assessment Averages 

 

 Pretest Posttest     

Units M SD M SD t df p d 

Control Structures .26 .17 .58 .26 4.68 17 < .001*† 1.10 

Variables .19 .17 .51 .32 3.69 17 .002*† 0.87 

Total Programming 

Comprehension 

.21 .07 .58 .24 6.48 17 < .001*† 1.53 

Note. Units were out of five questions. The total was out of 20. 

* Indicates the differences between pretest and posttest is significant p < .05. 

† Indicates the differences between pretest and posttest is significant at Bonferroni 

correction level p < .01. 
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Wilcoxon signed-ranks tests. The data that were not normally distributed for the 

units of Basic Procedures and Advanced Procedures were analyzed using Wilcoxon 

signed-ranks tests. The Wilcoxon signed-ranks tests were used to produce valid non-

parametric results because it is a superior analysis method for data that are non-normal in 

distribution (Pappas & DePuy, 2004). To complete the Wilcoxon signed-ranks tests, 

students’ average scores for each unit in addition to their average overall scores were 

calculated for the pretest and posttest. The average scores for each unit as well as the 

average total scores were then compared using Wilcoxon signed-ranks tests. According to 

Pallant (2007) and Rosenthal (1994), the effect size for Wilcoxon signed-ranks tests can 

be calculated by dividing the Z value by the root of the total N observations resulting in 

the correlation coefficient r. The resulting statistics are displayed in Table 4.5. The 

medians of Basic Procedures pretest and posttest were .20 and .70, respectively. A 

Wilcoxon signed-ranks test indicated that that there was a statistically significant effect in 

Basic Procedures (Z = -3.30, p = .001, r = -.55). The medians of the pretest Advanced 

Procedures and posttest Advanced Procedures were .20 and .70, respectively. A 

Wilcoxon signed-ranks test indicated that that there was a statistically significant effect in 

Advanced Procedures (Z = -3.43, p = .001, r = -.57). The effect size below -.50 indicated 

a large effect size (Cohen, 1992). To minimize familywise Type 1 error inflation, the 

Bonferroni correction (Bland & Altman, 1995) level was calculated by dividing the 

desired alpha level of .05 by total number of comparisons (5) to reveal a new significance 

threshold of p < .01. Both subscales remained significant at the Bonferroni correction 

alpha level. Specifically, the results suggest that when preservice teachers learn 
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programming through educational robotics, their comprehension of basic and advanced 

concepts can be increased. 

 

Table 4.5. Wilcoxon Signed-Ranks Tests – Programming Comprehension Assessment 

Averages 

 

 Pretest Posttest    

Units Mdn. SD Mdn. SD Z p r 

Basic Procedures .20 .15 .70 .29 -3.30 .001*† -.55 

Advanced Procedures .20 .18 .70 .30 -3.43 .001*† -.57 

Note. Units were out of five questions. 

* Indicates the differences between pretest and posttest is significant p < .05. 

† Indicates the differences between pretest and posttest is significant at Bonferroni 

correction level p < .01. 

 

Programming Motivation Survey  

The Programming Motivation Survey was given to participants before and after 

the robotics programming intervention. The Programming Motivation Survey included 25 

five-point Likert scale questions grouped into five subscales of five questions 

representing each subscale examined in this study (Intrinsic Motivation, Career 

Motivation, Self-Determination, Self-Efficacy, MTIPIT). Each Likert scale question 

asked participants to indicate their level of agreement with a statement from 1 (strongly 

disagree) to 5 (strongly agree). Both the pretest and posttest Programming Motivation 

Survey were tested for reliability (N = 18). According to DeVellis (2003), a Cronbach’s 

alpha coefficient below .60 is unacceptable, .60 to .69 is undesirable, .70 to .80 is 

respectable, and .80 and above is very good. The Cronbach’s alpha for this instrument’s 

pretest (α = .96) and posttest (α = .94) indicated very good reliability (DeVellis, 2003). 

The reliabilities of each of the instrument’s subscales were also tested, as shown in Table 
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4.6. The range of Cronbach’s alpha levels for these ranged from .80 to .90, which also 

indicated very good reliability (DeVellis, 2003). 

 

Table 4.6. Cronbach’s Alpha Reliability – Programming Motivation Survey 

 

Subscales Pretest α Posttest α 

Intrinsic Motivation .89 .89 

Career Motivation .88 .80 

Self-Determination .90 .89 

Self-Efficacy .85 .87 

MTIPIT .89 .81 

Total Programming Motivation .96 .94 

 

Descriptive statistics. First, descriptive statistics about the programming 

motivation survey were presented in Table 4.7. From the pre-survey (M = 2.38, SD = .84) 

to the post-survey (M = 3.48, SD = .64), participants’ overall mean motivation improved. 

The subscale with the largest increase was Self-Determination in which participants’ 

mean motivation improved 28% between pretest and posttest.  

 

Table 4.7. Descriptive Statistics – Programming Motivation Survey 

 

Subscales  M SD 

Intrinsic Motivation 

 

Pre-survey 2.23 0.93 

Post-survey 3.11 0.96 

Difference 1.12 0.03 

Career Motivation Pre-survey 2.94 0.98 

 

 

Post-survey 3.72 0.59 

Difference .78 0.39 

Self-Determination Pre-survey 1.99 0.98 

 Post-survey 3.39 0.72 

Difference 1.41 0.26 

Self-Efficacy Pre-survey 2.17 0.82 

 Post-survey 3.47 0.84 

Difference 1.30 0.03 
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Table 4.7. Descriptive Statistics – Programming Motivation Survey Continued. 

 

Subscales  M SD 

MTIPIT Pre-survey 2.59 1.04 

Post-survey 3.72 0.75 

Difference 1.13 0.29 

Total Programming Motivation Pre-survey 2.38 0.84 

Post-survey 3.48 0.64 

Difference 1.10 0.20 

Note. Out of five-point Likert scale.  

 

Students’ responses in each of the subscales in the survey (Intrinsic Motivation, 

Career Motivation, Self-Determination, Self-Efficacy, MTIPIT), as well as the totals, 

were analyzed from the pre-survey and post-survey. The Programming Motivation 

Survey data were analyzed for normality, and then one of two tests was used to evaluate 

if the intervention’s results indicated an increase in motivation related to programming. 

In the same process outlined earlier in this chapter, first, Shapiro-Wilk tests were used to 

evaluate the normality of the data. From there, either the paired sample t-test or Wilcoxon 

signed-ranks test was used depending on the results of the Shapiro-Wilk tests. 

Shapiro-Wilk normality tests. The Shapiro-Wilk test was used to determine if 

the data were normally distributed for each subscale as well as the total. To complete the 

Shapiro-Wilk tests, the participants’ pre-survey and post-survey Likert scale averages for 

each subscale as well as the total were calculated. Then, the differences between the 

Likert scale averages for each subscale as well as the total from the pre-survey and post-

survey were found to create a new variable that represented the difference in Likert scale 

averages between the pre-survey and post-survey. These differences, shown in Table 4.8, 

were then analyzed using Shapiro-Wilk tests. 
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The data were found to be normally distributed for the Total (p = .796) as well as 

the subscales of Intrinsic Motivation (p = .353), Self-Determination (p = .155), Self-

Efficacy (p = .814), and MTIPIT (p = .974) using Shapiro-Wilk tests (p > .05). However, 

the subscale of Career Motivation (p = .045) was found to not be normally distributed. 

Therefore, as demonstrated in Table 4.8, the null hypothesis was retained for Intrinsic 

Motivation, Self-Determination, Self-Efficacy, MTIPIT, and Total while the null 

hypothesis was rejected for Career Motivation. 

 

Table 4.8. Shapiro-Wilk Normality Tests – Programming Motivation Survey 

 

Subscales W df p 

Intrinsic Motivation Difference .95 18 .353 

Career Motivation Difference .89 18 .045* 

Self-Determination Difference .92 18 .155 

Self-Efficacy Difference .97 18 .814 

MTIPIT Difference .98 18 .974 

Total Programming Motivation Difference .97 18 .796 

Note. * Indicates not normally distributed data (p < .05). 

 

The next steps of the data analysis process were guided by the Shapiro-Wilk test 

results. Either the paired sample t-test or Wilcoxon signed-ranks test were used to analyze 

the data depending on their normality results from the Shapiro-Wilk test, as outlined in 

Table 4.9. The data for the subscales and total that were normally distributed were 

analyzed using the paired sample t-test, and the data for the subscales that were not 

normally distributed were analyzed using the Wilcoxon signed-ranks test (Gibbons & 

Chakraborti; Pappas & DuPuy, 2004). Cohen’s d was calculated to determine the effect 

size for the change in each unit for the parametric data (Cohen, 1988). The effect size of 

the change in the non-parametric test was reflected by the correlation coefficient r 
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(Pallant, 2007; Rosenthal, 1994). To minimize familywise Type 1 error inflation, the 

Bonferroni correction (Bland & Altman, 1995) level was calculated by dividing the 

desired alpha level of .05 by the total number of comparisons (6) on the instrument’s data 

to reveal a new significance of p < .008. 

 

Table 4.9. Data Analysis Method Alignment Based on Normality of Data – Programming 

Motivation Survey 

 

Shapiro-Wilk Test Results Subscales Data Analysis Method 

Normally Distributed Intrinsic Motivation 

Self-Determination 

Self-Efficacy 

MTIPIT 

Total Programming Motivation  

 

Paired sample t-test 

Not Normally Distributed Career Motivation Wilcoxon signed-ranks 

test 

 

Paired sample t-tests. Paired sample t-tests were conducted to compare 

participants’ survey responses on the pre-survey and post-survey for the normally 

distributed subscales of Intrinsic Motivation, Self-Determination, Self-Efficacy, MTIPIT, 

and the normally distributed Total. To complete the paired sample t-tests, participants’ 

average Likert scale agreement levels for each subscale as well as their total results, were 

calculated on the pre-survey and post-survey. The changes in each of the subscales as 

well as the overall total were then compared using the paired sample t-tests. 

The paired samples t-tests revealed that participants’ posttest scores were 

significantly higher than pretest scores. Participants’ overall programming motivation 

increased from the pre-survey (M = 2.38, SD = 0.84) to the post-survey (M = 3.48, SD = 

0.64), t(17) = 6.10, p < .001, Cohen’s d = 1.44. Participants’ intrinsic motivation 
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increased from the pre-survey (M = 2.23, SD = 0.93) to the post-survey (M = 3.11, SD = 

0.96), t(17) = 4.26, p = .001, Cohen’s d = 1.00. Participants’ self-determination increased 

from the pre-survey (M = 1.99, SD = 0.98) to the post-survey (M = 3.39, SD = 0.72), t(17) 

= 7.07, p < .001, Cohen’s d = 1.67. Participants’ self-efficacy increased from the pre-

survey (M = 2.17, SD = 0.82) to the post-survey (M = 3.47, SD = 0.84), t(17) = 5.75, p < 

.001, Cohen’s d = 1.36. Participants’ MTIPIT increased from the pre-survey (M = 2.59, 

SD = 1.04) to the post-survey (M = 3.72, SD = 0.75), t(17) = 6.10, p < .001, Cohen’s d = 

1.20. 

As demonstrated in Table 4.10, the overall increase in students’ total 

programming motivation on the survey from pre-survey to post-survey was found to be 

statistically significant with the paired sample t-test t(17) = 6.10, p < .05. Intrinsic 

Motivation t(17) = 4.26, p = .001, Self-Determination t(17) = 7.07, p < .001, Self-

Efficacy t(17) = 5.75, p < .001, and MTIPIT t(17) = 5.09, p < .001 also demonstrated 

significant increases from pre to post. These results suggest that educational robotics did 

have an impact on preservice teachers’ programming motivation. Specifically, the results 

suggest that when preservice teachers learn programming through educational robotics, 

their programming motivation can be increased. As demonstrated in Table 4.10, the 

effect size for this analysis was found to exceed Cohen’s (1988) convention for a large 

effect (d = .80) for these subscales in addition to the total. All the subscales and the total 

were found to be significant at the Bonferroni correction level of p < .008. 
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Table 4.10. Paired Sample t-Tests – Programming Motivation Survey Likert Scale 

Agreement 

 

 Pretest Posttest     

Subscales M SD M SD t df p d 

Intrinsic Motivation 2.23 0.93 3.11 0.96 4.26 17 .001*† 1.00 

Self-Determination 1.99 0.98 3.39 0.72 7.07 17 < .001*† 1.67 

Self-Efficacy 2.17 0.82 3.47 0.84 5.75 17 < .001*† 1.36 

MTIPIT 2.59 1.04 3.72 0.75 5.09 17 < .001*† 1.20 

Total Programming 

Motivation 

2.38 0.84 3.48 0.64 6.10 17 < .001*† 1.44 

Note. Out of five-point Likert scale.  

* Indicates the differences between pre-survey and post-survey is significant p < .05. 

† Indicates the differences between pre-survey and post-survey is significant at 

Bonferroni correction level p < .008. 

 

 

Wilcoxon signed-ranks test. The data that were not distributed normally for the 

subscale of Career Motivation were analyzed using the Wilcoxon signed-ranks test. To 

complete the Wilcoxon signed-ranks test, students’ average Likert scale agreement levels 

for the Career Motivation subscale was calculated for the pre-survey and post-survey. 

The motivation levels were then compared using the Wilcoxon signed-ranks test. The 

correlation coefficient r was calculated to represent the effect size (Pallant, 2007; 

Rosenthal, 1994). The resulting statistics are displayed in Table 4.11. The medians of 

pre/post Career Motivation were 3 and 3.72, respectively. A Wilcoxon signed-ranks test 

indicated that there was a statistically significant effect in Career Motivation (Z = -3.58, p 

< .001, r = -.6). The effect size below -.50 indicated a large effect size (Cohen, 1992). 

The subscale was found to be significant at the Bonferroni correction level of p < .008. 

These results suggest that educational robotics positively impact preservice teachers’ 

Career Motivation related to programming. Specifically, the results suggest that when 

preservice teachers learn programming through educational robotics, their Career 

Motivation related to programming can be increased. 
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Table 4.11. Wilcoxon Signed-Ranks Test – Programming Motivation Survey 

 

 Pre-survey Post-survey    

Subscales Mdn. SD Mdn. SD Z p r 

Career Motivation 3 0.98 3.72 0.59 -3.58 < .001*† -.6 

Note. Out of five-point Likert scale.  

* Indicates the differences between pre-survey and post-survey is significant p < .05. 

† Indicates the differences between pre-survey and post-survey is significant at 

Bonferroni correction level p < .008. 

 

To summarize, the Programming Comprehension Assessment and Programming 

Motivation Survey were analyzed based on their associated subscales using either a 

paired sample t-test or a Wilcoxon signed-ranks test depending on their normality results 

on Shapiro-Wilk tests. Programming Comprehension Assessment data showed that 

participants’ posttest scores on all subscales and the total were significantly higher than 

their pretest scores. All subscales and totals on the Programming Comprehension 

Assessment were found to have a large effect size (Cohen, 1988; Field, 2009; Pallant, 

2007; Rosenthal, 1994). Programming Motivation Survey data showed that participants’ 

post-survey agreement levels on all subscales and the total were significantly higher than 

their pre-survey agreement levels. All subscales and totals on the Programming 

Motivation Survey were found to have a large effect size (Cohen, 1988; Field, 2009; 

Pallant, 2007; Rosenthal, 1994). 

Qualitative Findings and Interpretations 

This study utilized two different origins of qualitative data: field notes and 

individual interviews. This section covers the analysis of (1) field notes, and (2) 

individual interviews. 

 

 



www.manaraa.com

 

121 

Field Notes 

Field notes were written in-situ when possible during the instruction and 

immediately after teaching the instructional units. Field notes were used to provide thick, 

rich descriptions and inform the selection of the individual interview participants 

(Creswell, 2017; Phillippi & Lauderdale, 2018). To maintain an audit trail (Creswell, 

2017), a linear timeline of thoughts and events that were part of the intervention was kept 

in a researcher journal. My field notes on each class session were incorporated into the 

researcher journal and elaborated upon. In addition, notes on why codes were used and 

changed were also included in this audit trail. Inductive analysis was used to evaluate 

field notes along with the interview transcripts (Braun & Clarke, 2006).  

Individual Interviews 

 At the conclusion of the study, one third of the participants were purposefully 

selected for individual interviews about their experiences in the intervention. 

Interviewees were selected based on my observations of participants’ behavioral 

engagement that were also recorded in my field notes (see Table 4.12). Behavioral 

engagement was defined as on-task involvement and participation (Fredricks et al., 2004; 

Kim et al., 2015, 2017; Skinner et al., 2009). These individual interviews each took 

approximately 30 minutes in length and took place in my office during the class meeting 

schedule after the intervention was completed. The interview questions focused on the 

second research question and were delivered through a semi-structured interview format 

(see Appendix G). Each interview was open-ended in format, and I prompted the 

participant with a question, listened to the participant’s response, and asked follow-up 

prompts from the interview protocol as needed. 
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Table 4.12. Interviewees’ Demographic Information 

 

Pseudonym Age Gender Class. Education 

Major 

Prog. 

Exp. 

Robo. 

Exp. 

B. Engage. 

Paula 21 Female Junior Elementary No No High 

Mariah 18 Female Sophomore Elementary No No High 

Randy 18 Male Freshman Middle No Yes Medium 

Katy 18 Female Freshman Elementary No No Medium 

Jennifer 19 Female Sophomore Elementary No No Low 

Simon 20 Male Sophomore Middle No No Low 

Note. Class. means Classification, Prog. Exp. means programming experience, Robo. 

Exp. means robotics experience, and B. Engage. means behavioral engagement. 

 

 Transcripts of the interviews were made in real-time with the Microsoft Dictate 

audio transcribing tool in Microsoft Word, and the interviews were also audio recorded 

using a video camera facing a wall to record the interviews’ audio but not video. 

Transcriptions were checked for accuracy by me against recordings. Updates and 

formatting changes were made to accurately reflect the experiences and responses of each 

participant. The beginning parts where I explained the project and informed the 

participant of their rights were removed from the beginnings of the transcripts, and 

closing remarks were removed. In three instances with Simon, his responses were 

muffled or otherwise unintelligible. Notes were made within the transcript in these 

instances. For example, when his response for one question was muffled to the point 

which the microphone could not pick it up to be accurately transcribed in Microsoft 

Word, and the backup recording could not be used, and a note was included in brackets: 

Q: Which ones were at least enjoyable? 

A: [Muffled response] 

Q: OK, alright, so like the pseudocoding activities? 

A: Yeah. 
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The transcriptions were each contained in their own Microsoft Word documents. After 

each transcript was cleaned for formatting and clarity, the finalized transcripts were 

emailed privately to each participant to ensure their accuracy through member checking. 

Participants were asked to respond back, noting any perceived inaccuracies in the 

transcripts. Three of the six interview participants responded back and confirmed their 

transcripts. Then, coding was performed.  

Analysis of qualitative data. Participants’ responses in the transcripts as well as 

my field notes were examined through inductive analysis (Creswell, 2017; Mertler, 

2017). Before formal coding began, I reviewed each transcript numerous times over a 

period of two weeks to become familiarized with the transcripts’ contents. The transcripts 

and field notes were then uploaded into the Delve coding web tool.  

Two cycles of coding were performed. Each cycle consisted of multiple rounds of 

coding. Open coding was performed in the first cycle, followed by pattern coding in the 

second cycle (Saldaña, 2016). Table 4.13 shows the total numbers of final codes applied. 

These cycles and their rounds will be described in the sections below. Then, how the 

themes were identified will be described. 

 

Table 4.13. Summary of Qualitative Data Sources 

 

Data Sources Final Open Codes Applied 

Field Notes 16 

Interview Transcripts 164 

Total of Sources 180 

 

First cycle coding. For first cycle coding, two rounds of open coding were used to 

separate the qualitative data into discrete parts to analyze similarities and differences 
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(Saldaña, 2016). The transcripts and field notes were analyzed sentence-by-sentence in 

this open coding cycle (see Figure 4.1 and 4.2). Each of these rounds will be explained in 

the paragraphs below. 

 

 

Figure 4.1. Open coding in the Delve web tool. 

 

 

Figure 4.2. Open coding of field notes in Delve. 

 

Codes which summarized the experience of the participant in the transcript or my 

observations in the field notes were assigned to the qualitative data (Bloomberg & Volpe, 
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2016). Notes about the meanings of codes and topics of interest to review in further 

rounds of coding were kept in the researcher journal as a timeline of thoughts and events 

that occurred during the coding process (Lincoln & Guba, 1985; Merriam, 1998). In some 

instances, more than one code was applied for different aspects of a sentence through a 

coding process known as splitting (Saldaña, 2016). According to Saldaña (2016), splitting 

is a “meticulous line-by-line coding” technique that is used to provide more specific 

codes to transcripts (p. 229). For example, Figure 4.3 illustrates how the codes of More 

technology in future and Career Motivation were applied to the second sentence.  

 

 

Figure 4.3. Split coding in Delve. 

 

The first round of coding resulted in 193 preliminary codes. After peer debriefing 

(Lincoln & Guba, 1985; Shenton, 2004) with the dissertation chair, seven revisions were 

made to these first codes. For example, the code Math thought process was changed to 

Translates math after a peer-debriefing conversation where it was decided that the code 

could be updated to better describe the excerpt, which noted the translation of math from 

an abstract form to a concrete one for students. 

A second round of open coding was performed where the experiences of the 

participants were captured. During this round of coding, some codes were discarded or 

combined to encapsulate participants’ responses more accurately (Saldaña, 2016). Figure 

4.4 shows an example of the coding schemes. For example, the Round 1 code of All 

enjoyable was discarded and its contents were combined with the code Enjoyed all 
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activities. The code STEM/technology jobs going to become more important was 

subsumed into the More technology in future code in the second round. During this 

round, codes were also renamed to align more directly to the second research question. 

For example, the code Improve skills to become more employable from Round 1 was 

updated to the code of Career Motivation in Round 2 to better reflect the subscales used 

to evaluate the second research question. All changes to codes were recorded with 

analytic memos. This second round of coding resulted in 180 unique codes. I met with 

the dissertation chair, and peer-debriefing (Lincoln &Guba, 1985; Shenton, 2004) was 

again performed to review the analytic memos on the changes and to ensure the integrity 

of each of my codes.  

 

 

Figure 4.4. Example of coding schemes. 

 

Second cycle coding. The second cycle consisted of two rounds of pattern coding. 

Pattern coding is used to condense large amounts of data into smaller units to develop 

categories and then themes (Saldaña, 2016). In this cycle, pattern coding was used to 

filter the first cycle codes down into pattern codes, shown in Figure 4.5. 
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Figure 4.5. Sorting of open codes into pattern codes. 

 

Each pattern code consisted of multiple sub-codes from the first cycle. I aligned 

each open code to a pattern code category based on a definition, as shown in final form in 

Table 4.14. For example, the pattern code of Programming Embodies Abstract Concepts 

contained codes that illustrated participants’ perceptions about taking abstract formulas or 

equations and seeing them embodied through programming. To categorize codes into 

pattern codes, I first exported the finalized first cycle codes out of Delve. Then, as 

depicted in Figure 4.4, I compared open codes to align the open codes with the evolving 

pattern codes (Lincoln & Guba, 1985). A total of four codes from the open coding cycle 

could not be categorized due to their insufficient usefulness or insignificance for 

describing participants’ experiences, and they were discarded (e.g., prefer exactness) 

(Saldaña, 2016). During the pattern coding process, a note was made in my journal to 

keep track of decisions that were made about the codes’ meanings and relationships 

(Bazeley, 2013; Mertler, 2017). Peer debriefing (Lincoln & Guba, 1985; Shenton, 2004) 

was again performed with my dissertation chair, which led to more specific pattern code 

titles as well as the reorganization of different sub-codes to align to more suitable pattern 
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codes. For example, the pattern code Self-Efficacy was split into pattern codes Low Self-

Efficacy and Increased Self-Efficacy; the pattern code of Mazes was discarded, and its 

sub-codes were added to the Challenges pattern code. Updates to the verbiage of the 

codes’ definitions were also made. For example, the Robotics Visualize Abstract 

Concepts pattern code’s use of the word “sentiments” in the definition “Codes which 

illustrated participants’ sentiments about taking abstract formulas or equations and seeing 

them visualized through robotics” was updated to “perceptions” in order to remove 

confusion relating to the two definitions of “sentiments.” This change was recorded in the 

researcher journal notes as follows: 

The term sentiments in the definition for the Robotics Visualize Abstract Concepts 

pattern code was updated to the term perceptions due to the recommendation that 

sentiments may confuse readers with its two different definitions 

(attitude/perception toward something versus feelings of tenderness). 

These peer debriefing (Lincoln & Guba, 1985; Shenton, 2004) changes filtered 176 of the 

unique open codes from the first cycle into the 20 pattern codes. After peer debriefing 

(Lincoln & Guba, 1985; Shenton, 2004) and a second round of pattern coding, these were 

finalized into 22 pattern codes. These 22 finalized pattern codes are displayed in Table 

4.14. Once the pattern codes were well-defined, peer debriefing (Lincoln & Guba, 1985; 

Shenton, 2004) was again performed, and the individual codes that comprised each 

pattern code were again analyzed for alignment and duplicity. For example, the open 

codes Fits with math, Use with math, and Geometry were moved into the pattern code 

Single Subject Integration Strategies. 
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Table 4.14. Cycle 2 – Final Pattern Codes 

 

Pattern Codes Pattern Code Definitions Example Excerpt 

Advantages in 

Job Seeking 

 

Codes that denoted job, resume, and career 

skill value (preservice teacher-centered) 

“…so, it'll be a plus for you to have that special for employers 

that you have that, so I think it's a plus.”  

– Randy 

 

Autonomy 

 

Codes highlighting participants’ preferences 

to solve problems in their own ways 

“Students asked if they have to solve a particular way (rotations, 

degrees, seconds) or if they were allowed to change – preferred 

degrees.” 

– Field Notes 

 

Better 

Educator 

Codes about how participants perceived 

learning programming could better them to 

grow as educators for their students  

“I think anything you can learn - any tool or whatever - you can 

learn as a person, it’s always good to grow.” 

– Randy 

 

Blank Slate Codes acknowledging participants’ initially 

non-existent understanding of programming 

“So, I had like a blank slate and now I kind of understand...” 

– Katy  

 

Challenges 

 

Codes highlighting participants’ enthusiasm 

for the challenges 

“I guess the challenges were fun…” 

– Randy 

 

Collaboration 

Strategies 

Codes highlighting participants’ 

collaborative strategies (partner, other 

group, etc.) 

“I just worked with my partner and like used her insight use my 

insight together…” 

– Paula 

 

Cross-

Curricular 

Integration 

Strategies 

Codes representing participants’ cross-

curricular subject integration ideas for their 

future classrooms 

 

“You could do like longitude and latitude. But you could do 

that…voyages of different explorers. You could talk about the 

mileage, and you could actually kind of have like on a scale, and 

I didn't think about it that way, but it was pretty interesting.” 

– Randy 
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Table 4.14. Cycle 2 – Final Pattern Codes Continued. 

 

Pattern Codes Pattern Code Definitions Example Excerpt 

Decisively 

Committed to 

Integrate 

 

Codes associated with participants’ decisive 

commitment to integrating programming 

“I don't know exactly how it would fit in, but I know I could 

definitely like find a way once I get their curriculum. Like I 

would love to find a way.”  

– Katy 

 

Difficulty Codes noting difficulty or confusion with 

the programming activities and challenges 

“When we got into the more difficult stuff like the loops.” 

– Katy  

 

Extra Effort Codes which demonstrated participants’ 

extra effort while learning programming  

“Well I know that my partner for this Googled like formulas…” 

– Jennifer 

 

Foundational 

Knowledge 

 

Codes noting the basic or foundational 

content was important (i.e. Basic 

Procedures, lectures, etc.) 

“It was most valuable starting with the basics everything just 

leading up to the final thing just everything adding together was 

the most effective thing for me personally.”  

– Mariah  

 

Help-Seeking Codes which demonstrated participants’ 

strategies for getting help when 

experiencing a problem (i.e. another group) 

“If I wasn't sure about something, I would go ask somebody who 

got it already, got finished [with] the course.”  

– Simon  

 

Hesitant to 

Integrate 

Codes associated with participants’ hesitant 

feelings about integrating programming or 

feelings that they needed to learn more 

before integrating programming into 

teaching 

 

“So, yeah, honestly in history I'm not sure like I said if I was 

teaching math it would make perfect sense. In history I don't 

know to be honest.” 

– Jennifer 
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Table 4.14. Cycle 2 – Final Pattern Codes Continued. 

 

Pattern Codes Pattern Code Definitions Example Excerpt 

Increased 

Self-Efficacy 

Codes that related to increased self-efficacy 

(i.e., feelings of confidence toward learning 

more programming or self-efficacy when 

not understanding the programming activity 

or challenge) 

 

“Yeah, a little bit more confidence. I think it [confidence] has 

definitely grown since we started with the programming.”  

– Randy 

Interest 

 

Codes for excerpts demonstrating interest “Probably when we learned to get them to talk. I think it was 

cool how… I think it added more of a sense of like depth to it, 

maybe? Not just in moving around like they were like moving 

and talking and it was like really interesting to see like a box do 

that really.” 

– Katy 

 

Low Self-

Efficacy 

Codes that related to low self-efficacy (i.e., 

feelings of confidence toward learning 

programming) 

 

“Oh, it [self-efficacy] was definitely at a zero before.” 

– Paula 

Options in Job 

Seeking 

 

Codes that denoted increased options while 

job seeking 

 

“I think that it's like a unique skill set to have when you're like 

applying as a teacher anywhere… like, maybe be able to be 

thrown into that classroom to get your first job or whatever.” 

– Jennifer 

 

Prepares 

Students for 

Future 

Careers 

 

Codes which noted learning programming 

would help preservice teachers’ future 

students learn and be better prepared for 

their futures/jobs (student-centered) 

“I think honestly like the stem program and like that's gonna be 

the more like… the jobs that everyone's gonna look forward to 

as like technology advances. So, I feel like children need to learn 

how to do it.” 

– Mariah 
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Table 4.14. Cycle 2 – Final Pattern Codes Continued. 

 

Pattern Codes Pattern Code Definitions Example Excerpt 

Programming 

Embodies 

Abstract 

Concepts 

Codes which illustrated participants’ 

perceptions about taking abstract formulas 

or equations and seeing them embodied 

through programming  

 

“I think it’s interesting how it translates from like a math 

equation…”  

– Jennifer 

Robotics to 

Visualize 

Abstract 

Concepts 

Codes which illustrated participants’ 

perceptions about taking abstract formulas 

or equations and seeing them visualized 

through robotics 

 

“…it’s like a physical way, it shows them like visual, like they'll 

be able to see like you do this you add this and the robot does 

something.”  

– Paula 

Single Subject 

Integration 

Strategies 

 

Codes representing participants’ single 

subject integration ideas for their future 

classrooms 

 

“Maybe like how kids think through math… so like if you have 

like 1 movement block and two movement blocks is gonna move 

like 2 blocks.” 

– Katy  

 

Updates to 

Instruction 

 

Codes that related to updates students 

suggested for the programming instruction 

“I would make it longer… make it longer, maybe 6 weeks and 

that way you can go slow because like I know every not 

everybody in the class knew everything on how to do it in this 

pace and like I didn't know every single answer right off the bat 

but like I think like if we went like slower and it would just be 

more beneficial.” 

– Simon 
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Identifying themes. With the pattern codes finalized, I sorted the pattern codes to 

illuminate categories and themes. I sorted these pattern codes in a fluid and dynamic 

process which allowed for flexibility (Corbin & Strauss, 2008). In a code mapping 

process described by Saldaña (2016), “categories of categories” in “superordinate and 

subordinate arrangement” (p. 278) were created by moving around the pieces of paper for 

each pattern code. Pattern codes were united into categories. The categories were 

analyzed, and themes were revealed, as shown in Figure 4.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. A concept map of the coding process. 
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The pattern codes of Difficult and Updates to Instruction were not relevant to 

motivation and were aligned to interview questions about participants’ perceptions of the 

curriculum that were designed to guide future curriculum improvement. They have 

therefore been addressed in the Curriculum Design Implications section of this 

dissertation and were not used to support any categories or themes. 

By reviewing participants’ interview responses, a theme was uncovered which 

explained participants’ intrinsic motivation. Participants explained that their interest and 

enjoyment increased, that the authentic problems in the intervention that they solved with 

educational robotics were fun, and that the ability of educational robotics to represent 

abstract concepts was interesting. The incorporation of four pattern codes (Robotics to 

Visualize Abstract Concepts, Programming Embodies Abstract Concepts, Interest, and 

Challenges) led to categories associated abstract concepts in concrete form being 

interesting, and problem-solving using programming being motivating. From those 

categories, the theme that participants perceived that a problem-based robotics 

curriculum improved their intrinsic motivation toward programming was uncovered.  

In addition, participants’ interview responses showed that participants perceived 

that learning programming through educational robotics would provide them with an 

attractive skillset in interviews, more options in the job market outside of their planned 

certification area, and the ability to better teach and prepare their future students. 

Incorporating four pattern codes (Advantages in Job Seeking, Options in Job Seeking, 

Better Educator, and Prepares Students for Future Careers) led to categories associated 

with participants’ perceptions that they had increased their advantages and options in the 

job market and they had expanded their future teaching potential. In turn, the theme 
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showing that participants agreed that knowing programming as a skill had advantages as 

a teacher was revealed.  

Qualitative data showed that participants used collaborative problem-solving 

strategies, preferred autonomy in solving problems, and put forth extra effort while 

programming. Incorporating four pattern codes (Autonomy, Extra Effort, Help-Seeking, 

and Collaboration Strategies) led to categories associated with autonomy in trying 

different programming options to solve problems and actively implementing 

collaborative problem-solving strategies. The theme highlighting that participants 

experienced self-determination towards programming in the face of robotics challenges 

was revealed.  

Participants’ interview responses noted that at the beginning of the intervention, 

participants did not have confidence in their programming skills, but by the end, those 

views had changed. Participants noted that the foundational knowledge and skills that 

they learned could be relied upon as the difficulty of the units increased, which built their 

self-efficacy. Incorporating four pattern codes (Low Self-Efficacy, Blank Slate, Increased 

Self-Efficacy, and Foundational Knowledge) led to categories associated with how 

participants had overcome initial low levels of self-efficacy, and the gradually increased 

level of difficulty of the units developed participants’ confidence. In turn, the theme 

reflecting that participants perceived that the gradually increasing level of difficulty in the 

robotics curriculum improved their self-efficacy about programming from initially low 

levels was uncovered.  

Reviewing participants’ interview responses uncovered decisively positive as well 

as more reserved commitments to integrate programming into their future classrooms. 
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Participants’ interview responses also revealed that they had already brainstormed 

specific integration ideas for their subject area and grade level. Incorporating four pattern 

codes (Decisively Committed to Integrate, Hesitant to Integrate, Single Subject 

Integration, and Cross-Curricular Integration Strategies) led to the categories about 

participants’ improving intention to integrate programming, and the ways in which they 

had devised instructional strategies for using programming in their future classrooms. 

Based on these categories, the theme illustrating that participants perceived programming 

as a viable fit in their future classrooms was generated from these categories.  

Validating and finalizing the themes. As themes were identified, thick, rich 

description, an audit trail, peer-debriefing, and member checking were used to evaluate 

the themes’ validity. Thick, rich descriptions (Bazeley, 2013; Creswell, 2017; Mertler, 

2017) in the form of verbatim quotes from the participants were used to support the 

themes. A researcher journal was used to maintain an audit trail documenting the events 

and decisions which occurred during the study and subsequent analysis (Lincoln & Guba, 

1985; Merriam, 1998). The researcher journal was used to justify codes as well as 

compare and supplement the thick, rich descriptions. Peer debriefing (Lincoln & Guba, 

1985; Shenton, 2004) was performed with my dissertation chair, which aligned codes and 

focused the language of the themes. Member checking (Creswell, 2017; Merriam, 1998; 

Mertler, 2017) occurred via email because of the COVID-19 pandemic and was used to 

allow participants to verify the accuracy of their interview transcripts as well as the 

findings. Interviewees were first emailed the interview transcripts and were instructed to 

reply with critiques or questions. Three of the six interviewees emailed back to confirm 

the accuracy of their transcripts, but no additional insights were provided. The three other 
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interviewees did not respond. Then, interviewees were asked to review the themes and 

categories and email me back with critiques or questions. Three of the six interviewees 

emailed back to confirm the accuracy of the themes and categories, but no additional 

insights were provided. The other three interviewees did not respond. The themes and 

categories were then finalized. 

Themes 

Themes were derived from the finalized categories. Categories arranged by 

common responses shared by multiple participants were composed into themes related to 

the second research question (Saldaña, 2016). In the following section, themes are 

presented accompanied by meaningful verbatim quotations from the individual 

interviews, attributed to participants via pseudonyms, and excerpts from the field notes 

are indicated in the text as field note entries that have been chosen to support the themes 

by presenting context (Creswell, 2017). Interview quotations are accompanied by a 

pseudonym to protect the participants’ identities (i.e., Paula, Simon, Randy, etc.). Five 

overarching themes were revealed from the qualitative analysis. Through the evaluation 

of the field notes and individual interviews, it was revealed how and to what extent the 

educational robotics intervention influenced preservice teachers' motivation related to 

programming. Interview data indicated the following themes: (1) participants perceived 

that a problem-based robotics curriculum improved their intrinsic motivation toward 

programming, (2) participants agreed that knowing programming as a skill had 

advantages as a teacher, (3) participants experienced self-determination towards 

programming in the face of robotics challenges, (4) participants perceived that the 

gradually increasing level of difficulty in the robotics curriculum improved their self-
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efficacy about programming from initially low levels, and (5) participants perceived 

programming as a viable fit in their future classrooms. These themes, their associated 

categories, and example open codes which contributed toward them are outlined in Table 

4.15.  

 

Table 4.15. Summary of Themes, Categories, and Example Open Codes 

 

Theme Categories Example Open Codes 

Participants 

perceived that a 

problem-based 

robotics 

curriculum 

improved their 

intrinsic 

motivation 

toward 

programming 

  

Representing abstract 

concepts in concrete form 

fostered interests 

 

Problem solving using 

programming improved 

motivation 

Translates from math 

Physical way to teach abstract 

Visualize equations 

 

Cool 

Interesting 

Authentic problem-solving 

Participants 

agreed that 

knowing 

programming as a 

skill had 

advantages as a 

teacher  

Job seeking advantages 

for preservice teachers 

 

 

Expanded preservice 

teachers’ teaching 

skillsets 

Career motivation 

Unique skillset 

High demand 

 

Grow as a teacher 

Technology will be more relevant 

in the future 

Would come in handy as a teacher 

 

Participants 

experienced self-

determination 

towards 

programming in 

the face of 

robotics 

challenges 

 

Autonomy in trying 

different programming 

options to solve problems 

 

Actively implementing 

collaborative problem-

solving strategies 

Self-Determination 

Reviewed class resources 

Googled formulas 

 

Asked a partner 

Asked other groups 

Ask somebody who already 

completed it for help 
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Table 4.15. Summary of Themes, Categories, and Example Open Codes Continued. 

 

Theme Categories Example Open Codes 

Participants 

perceived that the 

gradually 

increasing level 

of difficulty in the 

robotics 

curriculum 

improved their 

self-efficacy 

about 

programming 

from initially low 

levels 

 

Overcoming initially low 

self-efficacy 

 

 

 

 

Developing confidence 

about programming 

gradually 

Beginning: Did not know what to 

expect 

Beginning: Blank slate 

Beginning: Didn’t know much 

programming 

 

Basics and foundational 

knowledge effective 

Lectures were effective 

End: Programming knowledge has 

grown 

 

Participants 

perceived 

programming as a 

viable fit in their 

future classrooms  

Improving intentions to 

integrate programming  

 

 

Actively devising 

strategies to integrate 

programming 

Sees potential for use in classroom 

Definitely add programming to 

future teaching 

 

Math 

Science 

Use as reward 

 

Theme 1: Participants perceived that a problem-based robotics curriculum 

improved their intrinsic motivation toward programming 

This theme describes how participants perceived that the problem-based 

educational robotics activities in the curriculum improved their intrinsic motivation 

toward programming. Kim et al. (2015, 2018) and Kucuk and Sisman (2018) emphasized 

that preservice teachers’ intrinsic motivation should be kept at high levels throughout 

robotics activities. Participants experienced increased intrinsic motivation toward 

programming. Intrinsically motivated learners work toward attaining a goal because of 

their internal enjoyment in completing the task (Amabile et al., 1994; Law et al., 2010). 

Interviewees described their intrinsic motivation through characterizations of the 
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educational robotics by often referring to them as being “fun,” “cool,” or “interesting,” 

and therefore intrinsically motivating. “I've taken technology classes before and if we did 

something like this it would have been like 10 times cooler,” Simon stated in his 

interview. Educational robotics were not mentioned by me in any of the individual 

interview questions or follow-up prompts; however, the educational robotics activities 

and challenges were the elements of the curriculum that seemed to motivate participants 

the most. For example, Mariah explained in her interview, “Honestly, I think the whole 

experience is really fun and just being able to move the… program things so you could 

move a robot. I think that’s a really cool thing to do.” Overall, the participants found 

programming educational robotics to be intrinsically motivating.  

Theme 1 conveyed how participants perceived that a problem-based robotics 

curriculum improved their intrinsic motivation toward programming. The following 

sections will outline the categories subsumed in support of this theme: (1) representing 

abstract concepts in concrete form fostered interests, and (2) problem solving using 

programming improved motivation. 

Representing abstract concepts in concrete form fostered interests. Half of 

the interviewees (n = 3) commented that an element they found interesting was the ability 

of the programming and educational robotics to take abstract concepts and make them 

concrete for learning. This category is related to Theme 1 because interest aligns with 

intrinsic motivation (Ryan & Deci, 2000). Constructivism includes the building of 

abstract knowledge structures in a learner’s mind through concrete experiences (Piaget, 

1967, 1973). Educational robotics have been used to demonstrate physical representations 

of abstract concepts for learners (Bers, 2010; Bers et al., 2002; Han, 2013). The idea of 
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using educational robotics to represent abstract concepts was noticed by participants. For 

example, Paula mentioned that she perceived robotics a tool for concrete representation 

in her interview: “…it’s like a physical way, it shows them like visual, like they'll be able 

to see like you do this you add this and the robot does something.” An excerpt from 

Jennifer’s interview summarized participants’ positive perspectives on the transition of 

abstract concepts into concrete actions:  

I liked when there was a maze and we had to make an equation to figure it out 

because I think it’s interesting how it translates from like a math equation to like 

actually like seeing it happen in front of your eyes. 

The transition of math to something observable being interesting was not unique. Further 

validating this category and overall theme, Katy noted in her interview that she liked the 

computational thinking aspect of programming the robots and watching them perform 

those programs, as well:  

Maybe like how your thought processes are like related to like what the robots are 

doing. I never knew about robots really but learning how to program and how it 

kind of like went along with like people[’s] like thought processes I thought that 

was really interesting. 

Participants’ recognition of the process of taking abstract ideas and making them more 

concrete took another form as well. Similarly, Randy enjoyed the pseudocode process. In 

his interview, he explained that he appreciated the process of writing the pseudocode and 

then translating it into the programming language, making it more concrete: 
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I forget the word, what it was called…pseudocode. And actually doing that is 

exactly the same things [sic] like putting the code into the computer so I thought 

[it] was good visual representation of that, so I appreciate that. 

The idea of translating abstract concepts into concrete processes was also reflected in my 

field notes. For example, I noted that “Many students [are] using math as opposed to 

guess and check,” choosing the workflow of writing abstract math formulas and then 

transitioning their programs from math formulas to programs as opposed to tinkering 

and writing the programs based on the concrete actions of their robots. Additionally, I 

made a field note about how there was confusion over presenting a complicated 

variables algorithm without focusing on the math and pseudocode behind it. Altogether, 

these data indicated that while participants solved problems, they were interested in 

seeing abstract thinking translated into concrete representations either in the 

programming language or in the movements of the educational robotics. Participants’ 

interest links to intrinsic motivation and supports Theme 1. 

Problem solving using programming improved motivation. The problems 

participants solved improved their intrinsic motivation. This category aligns with Theme 

1 because it describes a source of participants’ intrinsic motivation. Authentic problems 

in this context are those which combine content from science and math areas to be solved 

with the aid of educational robotics (Kopcha et al., 2017). Learners are most likely to 

learn programming skills when educational robotics tasks are introduced in a context that 

necessitates problem-solving through authentic science and math skills (Pea, 1987). All 

interviewees (n = 6) articulated that the authentic activity and challenge elements of the 

curriculum were intrinsically motivating in their responses to question #2, “Tell me about 
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your experiences with the programming activities in the course.” In addition, 

programming the robots to resolve authentic problems or challenges (e.g., color testing, 

mazes) were the aspects of the intervention which participants most often characterized 

as interesting or fun.  

For example, partners found it enjoyable to program the robot to say the name of 

the color the sensor detected using a switch and a loop to control the flow of the program 

depending on the color input. In reference to this activity, Katy stated the following in her 

interview: 

Probably when we learned to get them to talk. I think it was cool how… I think it 

added more of a sense of like depth to it, maybe? Not just in moving around like 

they were like moving and talking and it was like really interesting to see like a 

box do that really. 

Overall, half of the interviewees (n = 3) mentioned that they were interested in not only 

seeing the robots move, but some authentic tasks such as programming them to identify 

different colors and speak were intrinsically motivating aspects as well. My field notes 

confirmed the interview data and noted that participants were energized and interested in 

checking the colors of different folders they had in their backpacks, as well as different 

objects throughout the room. However, it was noted that some participants quickly tired 

of hearing the colors repeatedly announced by the robots. Interestingly, some groups – 

outside of my classroom instruction – figured out how to record their own sounds and 

write programs that played their recordings for different colors, exceeding the 

requirement of the activities. This demonstrated students’ interest in the activity. 
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The authentic problems participants solved in the challenges were the intrinsically 

motivational aspect cited by all interviewees (n = 6). Interviewees pointed to the 

authentic problems as being fun and interesting. “I guess the challenges were fun and 

figuring out ways to use the program,” Randy stated. Two challenges that were most 

often mentioned by interviewees as being intrinsically motivating were the Maze 

Challenge in the Advanced Procedures unit and the Maze with Variables Challenge in the 

Variables unit.  

Participants were motivated by the mazes. “I think the most enjoyable part was 

we had to do the maze,” Randy noted in his interview about the Maze Challenge. Paula 

reinforced Randy’s enjoyment of the Maze Challenge. Paula mentioned in her interview 

that she enjoyed working through the Maze Challenge early in the intervention because it 

gave her an opportunity to exercise her new, yet limited programming skills. The 

experiences shared by Randy and Paula further validate the importance of this category 

related to solving problems and Theme 1. 

The Maze with Variables Challenge was also described as being motivating. This 

challenge took the original Maze Challenge and added color swatches to the floor of the 

maze. Participants had to program their robots to turn in a specific direction or stop 

depending on which color their robot’s color sensor picked up. Simon explained in his 

interview what he liked from the intervention: 

Thinking back…like each time you use the robots to navigate a different course 

and like just like learning about like how to do every single course having to stop 

[at a] certain color and have it [to] make like sharp turns and just like being able 

to like fully understand how to use it in particular. 
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Mariah echoed Simon’s statement in her interview: “The last one…Just seeing a robot 

move whenever it hits the color or like having it stop. I think it’s a really interesting way 

[to learn].” In summary, these data indicated that problem solving using programming 

improved participants’ intrinsic motivation. 

Theme 2: Participants agreed that knowing programming as a skill had advantages 

as a teacher 

This theme describes participants’ agreement that knowing programming as a 

skill had advantages for them professionally as teachers. Learners who have career 

motivation related to a topic see that topic’s relevance to their future careers (Arwood, 

2004; Glynn et al., 2009). Preservice teachers who have learned programming with the 

aid of educational robotics have experienced meaningful increases in their STEM career 

motivation (Kim et al., 2015). Interviewees described their career motivation through 

references to the personal career and teaching advantages of learning programming. For 

example, Randy explained in his interview that learning programming as a teacher was 

advantageous: “Especially with how society is going with more technology, so it'll be a 

plus for you to have that special for employers that you have that [sic], so I think it's a 

plus.” The following sections will outline the categories subsumed in support of this 

theme: (1) knowing programming had job seeking advantages for preservice teachers, 

and (2) knowing programming expanded preservice teachers’ teaching skillsets. 

Job seeking advantages for preservice teachers. Interviewees expressed their 

perceptions of the value of learning programming in terms of obtaining more advantages 

on the job market. This category aligns to Theme 2 because it explains a personal 

professional reason behind why the participants valued knowing programming. Career 
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motivation is important to learners’ long-term goals, with professional success being a 

primary reason why learners pursue college studies (Glynn et al., 2011). Educational 

robotics have been used in prior research to increase learners’ career motivation (Goh & 

Ali, 2014). Advantages or options in job seeking are pertinent to participants’ career 

motivation. The two main reasons interviewees reported that they were motivated to learn 

and use programming for their own benefit stemmed from (1) being more marketable in 

interviews, and (2) creating more opportunities for themselves for positions outside their 

licensure area. Overall, half the interviewees (n = 3) viewed learning programming as a 

skill that would be valuable in obtaining their future employment. Interviewees noted that 

the future of the economy being tied to the growth of technology was a factor that 

impacted their career motivation. In his interview, for example, Simon explained that 

knowing programming could make him more desirable in a job interview: “You walk 

into a job interview, and you tell them I don't even need training like I know how to do 

this I think it goes a long way.” While some interviewees noted that programming was a 

skill that employers would be impressed by, others noted that learning programming 

might give them more options on the job market for positions different from their 

licensure area. For example, Jennifer explained in her interview: 

I think that it's like a unique skill set to have when you're like applying as a 

teacher anywhere because like I know at my high school that the tech ed. teachers 

were like in high demand, but then nobody wanted to teach it, so I think that it's 

like, you need to have that in like, maybe be able to be thrown into that classroom 

to get your first job or whatever.  
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Participants perceived the programming experiences gave them a more diverse skillset to 

get their first teaching jobs. From adding confidence in interviews to creating a greater 

number of opportunities to get a foot in the door in schools for positions outside of their 

licensure area, participants confirmed their career motivation through their recognition of 

the employability of programming-literate educators. 

Expanded preservice teachers’ teaching skillsets. Most interviewees (n = 4) 

expressed that learning programming through educational robotics would help them 

expand their future teaching skillsets to benefit their future students. This category aligns 

to Theme 2 because it explains an altruistic professional reason for why the participants 

valued knowing programming. Increased knowledge of teaching, such as teaching 

strategies, is a factor which can motivate teachers to stay in their career (Sinclair, 2008). 

Programming offered new teaching strategies, among other things, to participants. 

Interviewees became motivated to learn programming through educational robotics 

because it would allow them to provide better lessons for their students. Statements from 

interviewees identified the added teaching options which programming offered. For 

example, “I feel like it would come in handy a lot with me going into teaching,” noted 

Katy. Learning with educational robotics also promoted personal growth as a teacher. In 

his interview, Randy stated, “I think anything you can learn – any tool or whatever – you 

can learn as a person, it’s always good to grow.” Jennifer echoed this perspective in her 

interview and reinforced how learning programming would further benefit the 

participants’ future students: 

I think like because technology is – even since I was like in kindergarten keep 

coming into the classroom – more and more and more and it's going to be like a 
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bigger thing and understanding it will help you like to better the education of your 

students. 

In particular, the use of programming and educational robotics to create interesting and 

engaging lessons was a common idea. “I think it could be fun for them,” remarked 

Jennifer in her interview. Paula thought back to the integration example videos, which 

showed teachers using programming in various subjects. “Seeing all the different videos 

that we watched seeing teachers incorporate it even in like gym class, I thought it was a 

really good way to get students like interested in learning whatever topic it was,” she 

explained in her interview. Mariah added she was motivated to integrate programming 

because it could help with getting students’ attention within a lesson, “Just make lessons 

really interesting and just to keep them engaged.” Participants noted perspectives that 

programming activities offered a teaching tool to enhance their lesson plans to grab 

students’ attention and engage them, making their teaching better.  

Recognition of the importance of participants preparing their students for the 

future technology-driven economy was common. In her interview, Katy stated that the 

aspects of “Math and learning technology” were important for students to learn. Katy 

explained: 

We are getting more in[to] the future [and] technology is getting more ingrained 

in our lives. Technology and like, learning how to program stuff because, like I 

said, like the more and more into the future stuff like [progresses], that's going to 

be more relevant. 

Mariah echoed this perspective of the importance of preparing future students for a 

technology-driven job market in her interview: “I think honestly like the STEM program 
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and like…the jobs that everyone’s going to look forward to as like technology advances. 

So, I feel like children need to learn how to do it.” Mariah’s perspective further validates 

the importance of this category and theme.  

Using programming to help provide differentiated methods of instruction was 

another commonality in the interview responses. Jennifer stated in her interview that she 

would use programming “If there’s like value in it” such as using programming and 

educational robotics as a reward activity for students or having students learn through 

play. “I think it would be like beneficial just like the parallelogram blocks and stuff, like 

kids play with that they don't even realize that they're learning,” Jennifer added. Paula 

also explained in her interview the benefits of programming educational robotics as an 

added teaching strategy to help students learn without knowing it: 

I feel like because students like don't always like… I think it's a way to like get 

them to learn without realizing that they're learning something 'cause they're just 

like oh cool it’s robots like they're not really thinking about the fact that they are 

learning something through using them. 

The idea shared by Paula further validates this category and overall theme. As outlined 

above, one reason participants valued learning programming through educational robotics 

was because it could help them become better teachers to improve their future teaching 

and benefit their future students. 

Theme 3: Participants experienced self-determination towards programming in the 

face of robotics challenges  

 This theme describes interview responses that indicated participants’ experiences 

with self-determination. Learners with self-determination feel as though they have 
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control over their learning (Black & Deci, 2000). Teachers must have self-determination 

to be successful when integrating technology (Cullen & Greene, 2011). Field note entries 

highlighted participants’ preference for autonomy in their problem-solving solutions and 

participants cited using personalized problem-solving techniques and collaborative 

problem-solving strategies in order to solve problems. In his interview, Randy described 

how he would seek out peers and “compare notes with other people” as a way to identify 

what he was doing wrong in order to adjust his programming strategy. The following 

sections will outline the categories subsumed in support of this theme: (1) autonomy in 

trying different programming options to solve problems, and (2) actively implementing 

collaborative problem-solving strategies. 

Autonomy in trying different programming options to solve problems. The 

educational robotics activities and challenges fostered the autonomy of participants to try 

their own unique options to solve problems. This category is related to Theme 3 because 

autonomy is a factor in self-determination (Black & Deci, 2000; Ryan & Deci, 1985, 

2020). The educational robotics activities and challenges were designed to be able to be 

solved in multiple different ways, which allowed participants to experiment with different 

programming processes. Participants indicated that the open-ended nature of the activities 

and challenges fostered autonomy among participants. Randy explained in his interview 

the appeal of autonomy in the educational robotics programming activities: “I guess you 

could use the same but different program but like I guess use different ways to get to the 

same result.” Paula explained in her interview that she was intrigued by the opportunity 

to exercise her new, yet limited programming skills to try out various solutions and find 

the one that solved the problem. “We didn't really know that much about programming 
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yet and we had to kind of like figure out our own way to like get through the maze,” 

Paula said. My field notes offered insights into autonomy. One field note stated that 

participants asked if they had to solve an activity in a particular way (using rotations, 

degrees, or seconds) or if they were allowed to choose their own programming method to 

solve the problem. The participants were excited when they were told that they could 

solve the challenge using their own preferred method. These data indicated that the 

educational robotics programming activities encouraged interviewees’ autonomy in 

problem-solving 

Actively implementing collaborative problem-solving strategies. All 

interviewees (n = 6) commented that actively implementing collaborative problem-

solving (CPS) strategies contributed toward learning the programming concepts. This 

category is related to Theme 3 because CPS strategies can help learners’ self-

determination by combining their collective efforts and knowledge (Kopcha et al., 2017; 

Lanzonder, 2005; Witney & Smallbone, 2011). Both the aid of partners designed as part 

of the curriculum as well as the unplanned collaborative classroom environment were 

mentioned by participants in the interviews. This category is related to Theme 3 because 

participants’ utilization of CPS strategies represented participants’ additional effort 

toward solving a learning task, thus their self-determination. The grouping of participants 

into partners provided a strong aid for participants to collaborate and build upon their 

collective insights to solve problems. “I just worked with my partner and like used her 

insight and used my insight together,” Paula explained in her interview. Randy also stated 

in his interview that his partner aided him in learning programming: “I guess I will lean 
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on the people that [I] worked with and ask them questions.” Partners who combined their 

insights to solve problems represented CPS strategies and self-determination. 

Interviewees noted they also sought help from peers outside of their immediate 

partner when they did not understand something. Mariah explained in her interview that 

becoming stuck on a problem was the trigger for when she would ask a peer: “When I 

was really stuck on something that's when I was like OK, maybe I need [a person] to help 

me but I need someone else… it's not clicking right now.” In his interview, Randy 

commented that “I kind of would compare notes with other people and see their thinking 

process and how they got their results and compare and see what I was doing and see if I 

can make any adjustments.” In his interview, Simon explained his process for reaching 

outside his immediate partner for help. 

We all had somebody or some people either next to us doing it with us and like if 

you didn't know how to do something like maybe your partner did… but like 

there was always somebody in the class.  

Participants described picking out peers in other pairs who had completed the activities 

and challenges successfully to help them. “If I wasn't sure about something, I would go 

ask somebody who got it, already got finished the course [sic],” Simon added in his 

interview. The language found in four field notes affirmed participants’ interview 

descriptions. Three notes in particular focused on partner collaboration dynamics. My 

first note on partner dynamics chronologically was from the first Basic Procedures class. 

This entry mentioned, “Partners began working together, but [they are] still not working 

together as much as I would like.” This note, which highlighted that partners were less 

collaborative during the Basic Procedures unit, is contrasted from one in the second 
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Advanced Procedures class: “Partners seem to be working together better across the 

board.” Finally, a separate observation noted, “Partners are planning their programs 

collaboratively.” This change in partner dynamics might be attributed to the more 

difficult problems given to the participants as the curriculum progressed, which required 

them to collaborate more. During the Control Structures unit, another note mentioned, 

“Some groups finished quickly while others struggled to keep their robot in a straight 

line. Groups [are] helping each other.” In total, these data indicated that participants used 

CPS strategies both between partners and between groups. These findings might indicate 

that as the difficulty of the problems increased, participants sought collaboration outside 

of their immediate partner to solve the problems. These interview excerpts highlighting 

CPS strategies firmly supported Theme 4 and educational robotics challenges 

contributing toward self-determination related to programming. 

Theme 4: Participants perceived that the gradually increasing level of difficulty in 

the robotics curriculum improved their self-efficacy about programming from 

initially low levels 

 This theme describes how educational robotics affected the participants’ self-

efficacy toward programming. Learners with self-efficacy have confidence in their ability 

to achieve a learning task (Bandura, 1997). Low self-efficacy can be attributed to 

educators using new teaching materials and their uncertainty with learning new 

technologies (Curzon et al., 2009; Meerbaum-Salant et al., 2013). Participants were able 

to overcome an uncertainty barrier to improve their programming self-efficacy. 

Participants described low initial levels of self-efficacy due to their perceived low 

comprehension of programming concepts. “So, I had like a blank slate,” Katy said about 
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her beginning programming knowledge and skills in her interview. However, participants 

described how their self-efficacy related to programming increased as they developed an 

evolving confidence that they attributed to the gradually increasing level of difficulty of 

the robotics curriculum. For example, in her interview, Mariah attributed the gradually 

increasing level of difficulty of the robotics curriculum as being helpful: “starting with 

the basics, everything just leading up to the final thing, just everything adding together 

was the most effective thing for me personally.” The following sections will outline the 

categories subsumed in support of this theme: (1) overcoming low self-efficacy, and (2) 

developing confidence about programming gradually. 

Overcoming initially low self-efficacy. All interviewees (n = 6) described low 

initial levels of self-efficacy related to programming. This category is related to Theme 4 

because it explains the commonality of where participants’ self-efficacy related to 

programming began. Grover and Pea (2013) have found that self-efficacy related to 

computer science was low in educators teaching computer science concepts. Low self-

efficacy may negatively impact teachers’ usage of a new technology in the classroom 

(Ertmer & Ottenbreit-Leftwich, 2010; Ertmer et al., 2012), which means that participants 

would not have been comfortable or competent enough to integrate programming before 

the intervention. The interviewees (n = 5) commonly mentioned their initial level of 

programming comprehension was nonexistent: “Oh, it was definitely at a zero before,” 

explained Paula. “I didn't have much background knowledge,” stated Mariah. “Like, I 

didn't know anything I didn't even know how to turn them on, so it's definitely 

improved,” insisted Jennifer. Simon explained the following experience in his interview: 
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Well at the beginning like, I didn't really know what to expect. I don't really know 

but I remember we took the pretest and like I see all these codes and stuff and like 

I even sent the picture to my mom and I was like, ‘do you have any idea how to 

do this?’ And she's like, ‘what are you talking about?’ And I was like I wasn't 

really sure what to expect.  

Participants noted that the composition of the programming curriculum contributed 

toward their improved self-efficacy. All interviewees (n = 6) stated that they felt that the 

educational robotics programming activities helped them a considerable amount in 

learning programming, removing their uncertainty in various ways. For example, Simon 

stated the following in his interview:  

Obviously, you know like each week something like the first week we learned 

how to turn it around and stop at colors, so like learning how to do all of that, like 

I didn't know how to do any of that.  

Others agreed with this perspective in their interviews. “Oh, it’s definitely a lot better,” 

Jennifer stated about her self-efficacy. Katy noted, “now I kind of understand that 

program a little bit more…definitely, it’s grown.” “Yeah, a little bit more confidence. I 

think it [confidence] has definitely grown since we started with the programming,” 

remarked Randy. These data indicated that participants initially had low levels of self-

efficacy related to programming, which they overcame throughout the intervention. 

Developing confidence about programming gradually. Participants’ 

confidence about programming developed gradually. This development was aided by the 

gradual building of the difficulty of concepts in the curriculum. Learners’ self-efficacy 

can be increased by experiencing success completing similar learning tasks (Bandura, 
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1997). This category is related to Theme 4 because it shares participants’ experiences and 

explains how their self-efficacy related to programming increased. A greater commitment 

to teaching is reported by teachers with higher levels of self-efficacy (Chen & Yeung, 

2015; Gunning & Mensah, 2011). Almost all interviewees (n = 5) noted that the 

introductory knowledge and concepts – things they characterized with the terms 

“foundational,” “basics,” or “simple” – were the most helpful to them. Successes with 

these basic concepts developed participants’ confidence gradually, and the basics that 

they learned helped them have success with more difficult problems. When asked what 

the most meaningful part of the curriculum was in his interview, Simon expressed a 

preference for the basic programming skills on which the other skills were built: 

For the most meaningful [part], I really liked the start on how to do it. It started 

like you could like figure it out. You can use the program on the computer to like 

navigate through it if you learn how to do it, and then you could just like try 

different things see what works [and] what doesn't, and so I think [the] 

foundational stuff.  

This idea was common among the interviewees. Interviewees’ responses explained that 

the basic knowledge they learned could be applied and help them be successful on the 

more difficult units. For example, Paula stated, “I think 'cause I'm kind of a visual person, 

I think just having like the slides that you provided ahead of time and then seeing that and 

being able to like apply it myself is probably the most valuable,” in reference to the 

instructional presentations of basic concepts that she could apply later.  

Further, the programming concepts gradually increased in difficulty level from 

the foundational knowledge and skills to more complex knowledge and skills, which 
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participants explained helped with building their competence and self-efficacy. For 

example, Katy articulated the following experience in her interview: 

Probably the first couple [lessons] when we were learning how many centimeters 

is like in one rotation or like how many seconds it takes across this much distance. 

You're really helping conceptually building the foundations of like the other stuff 

that we learned.  

Jennifer supported this perspective in her interview, as well. “Well, I feel like they all 

were valuable because they all like built onto each other, and then I feel like each time 

you did it like you could apply stuff from the last time.” Mariah also identified the 

gradual progression from the basics to more advanced concepts as being helpful in her 

interview: “It was most valuable starting with the basics, everything just leading up to the 

final thing, just everything adding together was the most effective thing for me 

personally.” These data show that the gradually increased difficulty of programming 

concepts helped build participants’ programming competence and self-efficacy gradually. 

Overall, participants recognized the gradual increase in the level of the units’ difficulty 

and how it impacted their competence, which supported improvements in their self-

efficacy. 

Theme 5: Participants perceived programming as a viable fit in their future 

classrooms 

This theme describes interview responses that indicated the educational robotics 

programming activities affected the participants’ perceptions of programming and how it 

could be applied into their pedagogy. Preservice teachers who have experienced 

educational robotics interventions have been noted to develop increased motivation to 



www.manaraa.com

 

158 

integrate programming robots into their STEM teaching (Kim et al., 2015). Participants’ 

perceptions about integrating programming appeared in two different areas in the 

interviews. The following sections will outline the categories subsumed in support of this 

theme: (1) improving intentions to integrate programming, and (2) actively devising 

strategies to integrate programming. 

Improving intentions to integrate programming. Almost all the interviewees’ 

(n = 5) intentions to integrate programming into teaching improved, as evidenced by each 

of their responses to interview question #9: “Where do you position yourself in the 

continuum of adding or not adding programming activities to your classes? Why?”. This 

category is aligned to Theme 5 because it demonstrates how participants’ perspectives 

changed on their intentions to integrate programming into teaching. Positive or negative 

beliefs and experiences influence teachers’ intentions to integrate a technology into their 

instruction (Ajzen, 2005).  For example, Paula summarized in her interview how her 

perception of programming’s usefulness changed: 

Going into it when you first proposed the idea that we would be using 

programming and stuff in this class I didn't really think that it would be useful at 

all, like I didn't really understand how I can possibly even use it in teaching and 

how it had anything to do with teaching, but obviously going through it I realized 

like it is very useful so it's kind of done a complete 180 to be honest.  

“I think it's more valuable now and I understand like why it helps students like learning 

like through math and stuff,” Jennifer noted in her interview. Mariah remarked in her 

interview that she now felt programming should be incorporated into schools even more 

than it currently is: “So I originally thought like programming was like… it’s already in a 
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lot of [local school district redacted]. OK, they're doing it now. I feel like it should be 

incorporated just a little bit more.” These interview responses demonstrate participants’ 

improvement in their intentions to integrate programming into their teaching. 

Participants’ current intentions to integrate that were articulated in the interviews 

ranged from solid confirmations of intent to perceptions that participants needed to do 

more research before integrating. For example, Mariah starkly stated in her interview, “I 

want to add it.” Others expressed their desire to integrate programming into their 

instruction but felt they needed further research into their future curriculum and 

applicable connections first. For example, Katy expressed a more reserved or hesitant 

intent to integrate programming, summarized in this interview statement: 

Um, I can see it being used a lot with like math and science, especially for 

younger kids. I feel like I haven't learned enough about it, but I can see the 

potential for like how programming could possibly work out in classrooms. 

She further elaborated: “I could really see myself adding this to my lesson plans,” and, “I 

don't know exactly how it would fit in, but I know I could definitely like find a way once 

I get their curriculum. Like I would love to find a way.” These responses demonstrate 

participants’ range of encouraging programming integration intentions. 

In summation, participants’ interview responses indicated that their intentions to 

integrate programming into their teaching improved correspondingly with their 

valuations of programming. Participants’ intentions included more reserved responses in 

which participants affirmed they wanted to integrate programming but needed to learn 

more about their curriculum or programming more generally before doing so, to decisive 

intentions to integrate programming into their teaching. These improved, positive 
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intentions among participants support this category’s theme that participants perceived 

programming as a viable fit in their future classrooms. 

Actively devising strategies to integrate programming. As outlined above, 

many interviewees stated strong confirmations of their intentions to incorporate 

programming in their future instruction. Positive attitudes about technology integration 

have been shown to be the strongest predictor of whether teachers integrate instructional 

strategies into their teaching (Palak & Walls, 2009). Ajzen (2005) suggested that a way to 

assess teachers’ technology integration attitudes is through studying their behavior. One 

behavior that demonstrated attitudes and technology integration potential of most of the 

interviewees (n = 4) was that they had already brainstormed strategies for future 

programming integration. Interviewees’ ideas for integration into their future curriculum 

are related to Theme 5 because they show exactly how participants envisioned fitting 

programming into their instruction.  

Interviewees had multiple ideas for integrating programming into their future 

instruction, including singular subjects as well as cross-curricular connections. “I feel like 

there’s a lot of different ways to incorporate it,” posited Paula. Four interviewees shared 

ideas for integrating programming with math. The use of educational robotics to 

represent abstract math concepts was a commonality. Jennifer explained in her interview 

that she would use programming to teach students the different parts of math equations. 

Katy explained in her interview that she would use programming as an introduction to 

technology for her elementary students to illustrate math problems. “So, like if you have 

like one movement block and two movement blocks, it is going to move two blocks,” she 
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explained. Paula also noted in her interview that she would use programming to illustrate 

math in a more tangible way:  

I want to teach second or third grade probably, and I feel like there's a lot of 

different ways I could incorporate it. Probably with math even like using the 

algorithms and stuff... 

As an example of a cross-curricular integration, Randy had an idea to integrate math into 

social studies through programming educational robotics. This detailed idea for a lesson 

plan that he shared in his interview was not based on any priming from anything similar 

that participants saw in the integration videos: 

You could do like longitude and latitude. But you could do that…voyages of 

different explorers. You could talk about the mileage, and you could actually kind 

of have like on a scale, and I didn't think about it that way, but it was pretty 

interesting. I guess I can go back to the example with um…about colonialization 

in America. We can talk about the different, um, probably the different British 

ships that came over and we could talk about how I guess like focusing for a little 

bit on how long they took to travel and as far as like mileage and then we can do 

like a fun activity with programming. A small activity that doesn't take too much 

time but also gives the children some programming knowledge. 

These integration ideas showed that participants could imagine both single-subject and 

cross-curricular linkages in lesson plans they had already devised. These interview 

excerpts that highlighted integration ideas firmly supported Theme 5 – participants 

perceived programming as a viable fit in their future classrooms. 
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Integrating Quantitative and Qualitative Findings 

 The quantitative Programming Motivation Survey and qualitative individual 

interview findings were combined to present a better representation of RQ#2 and the 

intervention’s effects on preservice teachers’ motivation related to programming. To do 

this, first, I interpreted the quantitative Programming Motivation Survey results. Then, I 

compared these results with the qualitative individual interview themes. In this way, the 

qualitative data offered additional explanation to what the quantitative results implied 

(Creswell, 2014; Mertler, 2017). The quantitative and qualitative findings were grouped 

by subscale, as demonstrated in Table 4.16. Then, these combined findings were used to 

investigate research question #2: How and to what extent does educational robotics 

influence preservice teachers’ motivation related to programming? Through this process, 

I found that the quantitative data that denoted an increase in motivation in each of the 

subscales was supported by the qualitative data. Further, the qualitative data offered 

insights into participants’ statistical increases in motivation through statements describing 

their experiences.  

Through this method, the qualitative data and findings were used to emphasize 

and detail the quantitative findings. The integrated quantitative and qualitative findings of 

this study indicate that preservice teachers’ motivation related to programming can be 

improved significantly through educational robotics’ influences on (1) intrinsic 

motivation, (2) career motivation, (3) self-determination, (4) self-efficacy, and (5) 

motivation to integrate programming into teaching. 
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Table 4.16. Integrating Quantitative and Qualitative Findings – Motivation 

 

Finding Quantitative Evidence Qualitative Evidence 

Intrinsic 

motivation 

improved in 

preservice 

teachers 

Intrinsic motivation increased 

from the pre-survey (M = 2.23, 

SD = 0.93) to the post-survey (M 

= 3.11, SD = 0.96), t(17) = 4.26, 

p = .001, Cohen’s d = 1.00. 

Theme 1: Participants perceived 

that a problem-based robotics 

curriculum improved their 

intrinsic motivation toward 

programming. 

 

Career 

motivation 

improved in 

preservice 

teachers 

Career motivation medians 

increased between pre-survey 

career motivation (3) and post-

survey career motivation (3.72), 

(Z = -3.58, p < .001, r = -.6). 

 

Theme 2: Participants agreed that 

knowing programming as a skill 

had advantages as a teacher. 

Self-

determination 

improved in 

preservice 

teachers 

Self-determination increased 

from the pre-survey (M = 1.99, 

SD = 0.98) to the post-survey (M 

= 3.39, SD = 0.72), t(17) = 7.07, 

p < .001, Cohen’s d = 1.67.  

 

Theme 3: Participants 

experienced self-determination 

towards programming in the face 

of robotics challenges.  

Self-efficacy 

increased in 

preservice 

teachers 

Self-efficacy increased from the 

pre-survey (M = 2.17, SD = 

0.82) to post-survey (M = 3.47, 

SD = 0.84), t(17) = 5.75, p < 

.001, Cohen’s d = 1.36. 

 

Theme 4: Participants perceived 

that the gradually increasing level 

of difficulty in the robotics 

curriculum improved their self-

efficacy about programming from 

initially low levels.  

 

MTIPIT 

improved in 

preservice 

teachers 

MTIPIT increased from the pre-

survey (M = 2.59, SD = 1.04) to 

the post-survey (M = 3.72, SD = 

0.75), t(17) = 6.10, p < .001, 

Cohen’s d = 1.20. 

Theme 5: Participants perceived 

programming as a viable fit in 

their future classrooms.  

 

Intrinsic Motivation  

Quantitative findings showed that intrinsic motivation increased from the pre-

survey (M = 2.23, SD = 0.93) to the post-survey (M = 3.11, SD = 0.96), t(17) = 4.26, p = 

.001, Cohen’s d = 1.00. Qualitative findings suggested that participants were intrinsically 

motivated to complete programming tasks as they solved problems and used concrete 

robots to represent abstract concepts. These combined findings indicated that educational 
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robotics improve preservice teachers' motivation related to programming by affecting 

their intrinsic motivation. 

Career Motivation  

Quantitative findings showed that career motivation medians increased between 

pre-survey career motivation (3) and post-survey career motivation (3.72), (Z = -3.58, p < 

.001, r = -.60). Qualitative findings suggested that participants were motivated to 

complete programming tasks in order to give themselves more advantages or options in 

job seeking and allow them to improve future teaching. These combined findings 

indicated that educational robotics improve preservice teachers' motivation related to 

programming by affecting their career motivation. 

Self-Determination 

Quantitative findings showed that self-determination increased from the pre-

survey (M = 1.99, SD = 0.98) to the post-survey (M = 3.39, SD = 0.72), t(17) = 7.07, p < 

.001, Cohen’s d = 1.67. Qualitative findings suggested that participants were motivated to 

complete programming tasks as they tried different options to solve problems and used 

CPS strategies. These combined findings indicated that educational robotics improve 

preservice teachers' motivation related to programming by affecting their self-

determination. 

Self-Efficacy 

Quantitative findings showed that self-efficacy increased from the pre-survey (M 

= 10.83, SD = 4.08) to post-(M = 2.17, SD = 0.82) to post-survey (M = 3.47, SD = 0.84), 

t(17) = 5.75, p < .001, Cohen’s d = 1.36. Qualitative findings suggested that participants 

were motivated to complete programming tasks and were able to improve their initially 
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low programming self-efficacy as a result of the gradually increasing level of difficulty of 

the programming concepts in the instruction. These combined findings indicated that 

educational robotics improve preservice teachers' motivation related to programming by 

affecting their self-efficacy. 

MTIPIT 

Quantitative findings showed that MTIPIT increased from the pre-survey (M = 

2.59, SD = 1.04) to the post-survey (M = 3.72, SD = 0.75), t(17) = 6.10, p < .001, 

Cohen’s d = 1.20. Qualitative findings suggested that participants were motivated to 

integrate programming into their instruction to the level that they had devised practical 

strategies to do so. These combined findings indicated that educational robotics improve 

preservice teachers' motivation related to programming by affecting their motivation to 

integrate programming into their teaching. 

Chapter Summary 

This section reviewed the analysis and findings of this study. This study 

employed both quantitative and qualitative data. Quantitative data from the Programming 

Comprehension Assessment and the Programming Motivation Survey were analyzed 

through paired sample t-tests. Findings associated with RQ#1 showed that participants’ 

overall comprehension of programming concepts significantly increased. Further, 

participants’ comprehension of basic procedures, advanced procedures, control 

structures, and variables significantly increased. Quantitative findings associated with 

RQ#2 indicated that participants’ overall motivation related to programming increased. 

Further, participants’ intrinsic motivation, career motivation, self-determination, self-

efficacy, and MTIPIT significantly increased. Qualitative data revealed five themes: (1) 
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participants perceived that a problem-based robotics curriculum improved their intrinsic 

motivation toward programming, (2) participants agreed that knowing programming as a 

skill had advantages as a teacher, (3) participants experienced self-determination towards 

programming in the face of robotics challenges, (4) participants perceived that the 

gradually increasing level of difficulty in the robotics curriculum improved their self-

efficacy about programming from initially low levels, and (5) participants perceived 

programming as a viable fit in their future classrooms.  

The findings of this study indicate that educational robotics can be used to 

significantly improve preservice teachers’ comprehension of programming concepts 

related to (1) basic procedures, (2) advanced procedures, (3) control structures, and (4) 

variables. The integrated quantitative and qualitative findings of this study indicate that 

preservice teachers’ motivation related to programming can be improved significantly 

through educational robotics’ influences on (1) intrinsic motivation, (2) career 

motivation, (3) self-determination, (4) self-efficacy, and (5) motivation to integrate 

programming into teaching.
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CHAPTER 5 

DISCUSSION, IMPLICATIONS, AND LIMITATIONS

The purpose of this action research was to evaluate the effect educational robotics 

have on programming comprehension and motivation of preservice teachers at a medium-

sized liberal arts university in the southeastern United States. Quantitative findings 

indicated an increase in participants’ comprehension of programming concepts as well as 

an increase in motivation related to programming. Qualitative data revealed five themes: 

(1) participants perceived that a problem-based robotics curriculum improved their 

intrinsic motivation toward programming, (2) participants agreed that knowing 

programming as a skill had advantages as a teacher, (3) participants experienced self-

determination towards programming in the face of robotics challenges, (4) participants 

perceived that the gradually increasing level of difficulty in the robotics curriculum 

improved their self-efficacy about programming from initially low levels, and (5) 

participants perceived programming as a viable fit in their future classrooms. Integrated 

findings of this study suggest that preservice teachers’ comprehension of programming 

concepts and motivation related to programming can be improved through educational 

robotics. This chapter shares the (a) discussion, (b) implications, and (c) limitations of 

this action research.  

Discussion 

The quantitative and qualitative data were combined to directly address the 

research questions of this study: (1) What is the effect of educational robotics on 
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preservice teachers’ comprehension of programming concepts? and (2) How and to what 

extent does educational robotics influence preservice teachers' motivation related to 

programming? To look at the big picture and compare this study’s results to previous 

findings in the field, existing literature on programming, educational robotics, preservice, 

and in-service teachers was used to guide these quantitative and qualitative findings. In 

this section, comprehension of programming concepts will first be discussed, followed by 

teachers’ motivation related to programming. 

Research Question #1: What is the effect of educational robotics on preservice 

teachers’ comprehension of programming concepts? 

The findings of this study indicate that educational robotics can be used to 

significantly improve preservice teachers’ comprehension of programming concepts 

related to (1) basic procedures, (2) advanced procedures, (3) control structures, and (4) 

variables. Comprehension of programming concepts, synthesized as programming 

comprehension in this study, is described by Ala-Mutka (2004) as the “ability to track 

code to build a mental model of the program and predict its behavior” (p. 5). Educational 

literature has shown that comprehension can be demonstrated in multiple ways, either by 

comparing, interpreting, describing, or organizing, among others (Bloom et al., 1956). 

Ramalingam and Wiedenbeck (1997) have explained that programming comprehension 

includes reading a program with the purpose of doing some further task, which 

necessitates understanding. 

Scores on the Programming Comprehension Assessment suggest that the 

educational robotics had a positive impact on participants’ comprehension of 

programming concepts. The paired sample t-test revealed that participants’ overall 
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posttest scores (M = .58, SD = .24) were significantly higher than pretest scores (M = .21, 

SD = .07), t(17) = 6.48, p < .001, Cohen’s d = 1.53. Participants entered the study with a 

low level of programming comprehension. The lowest score on the pretest was a 5%, and 

the highest was 40%. After the intervention, the participants’ scores increased 

significantly. The lowest score on the posttest was 15%, and the highest was 90%. Not all 

participants’ scores on the Programming Comprehension Assessment improved. Two 

participants’ scores stayed the same, while one participant’s score decreased from the 

pretest to the posttest. Although it is possible that these participants either did not learn 

anything over the four weeks of the intervention’s instructional time or the educational 

robotics intervention led to a decrease in their comprehension of programming concepts, 

these low scores might also be attributed to other factors, like assessment apathy 

(Thompson, 2008). While no participants achieved a perfect score on the Programming 

Comprehension Assessment, there were five participants who scored 80% or higher on 

the posttest. Altogether, these findings suggest that preservice teachers’ comprehension 

of programming concepts can be improved through educational robotics. 

The nearly unanimous positive results in this study confirm previous studies’ 

findings (Jaipal-Jamani & Angeli, 2017; Sullivan & Moriarty, 2009) on the 

comprehension of programming concepts. Jaipal-Jamani and Angeli (2017) found that 

their population of preservice elementary teachers had statistically significant differences 

in programming knowledge between pre and posttests as the result of an educational 

robotics intervention. This study’s results also confirm research by Sullivan and Moriarty 

(2009), which indicated that in-service teachers’ understanding of programming 
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increased from the no proficiency and low proficiency levels to the moderate and strong 

proficiency levels after robotics workshops.  

The findings of this study indicate that educational robotics can be used to 

significantly improve preservice teachers’ comprehension of programming concepts 

related to (1) basic procedures, (2) advanced procedures, (3) control structures, and (4) 

variables. The next sections will present an analysis of the findings related to the 

comprehension of programming concepts delineated by each unit of the Programming 

Comprehension Assessment. These findings will then be discussed in relation to existing 

literature. 

Basic procedures. Basic procedures in programming include syntactic 

programming concepts like the vocabulary, grammar, and format of a programming 

language (Mayer, 1979) as well as sequencing, which Strawhacker and Bers (2015) 

defined as “the idea that order matters when giving instructions” in programming (p. 

297). The fact that participants’ comprehension of basic procedures increased 

significantly from the pretest (Mdn. = .20, SD = .15) to posttest (Mdn. = .70, SD = .29) 

indicated that there was a statistically significant effect in participants’ comprehension of 

basic procedures concepts (Z = -3.30, p = .001, r = -.55). On the Basic Procedures unit, 

participants improved from a 19% to a 59% on average. This section will discuss the 

findings of the Basic Procedures unit and relate them to the existing literature. 

The increase in comprehension of basic procedures might be explained best by 

Ala-Mutka (2004) who suggested that “visualizing the basic programming structures” can 

be beneficial to for novices in building their comprehension of programming (p. 6). The 

educational robots’ actions allowed participants to visualize basic programming concepts 
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for the participants. According to Pennington’s (1986) framework of programming 

comprehension, mental representations based on experiences are layered on top of classic 

language comprehension. Through Pennington’s (1986) framework, novices visualize the 

programming functions in a more concrete form, adding operational mental models to the 

programming language through the visualizations. Visualizing programming in concrete 

form through educational robotics could account for participants’ improvements to their 

programming comprehension as functional knowledge could have been layered onto state 

knowledge and operations knowledge.  

Despite research by Kim et al. (2018), which noted that “participants omitted 

commands that were necessary for the robot to perform as planned” (p. 772), the results 

of this study, particularly in question #3 (Gain = .72), were different. This difference 

might stem from Kim et al. (2018) using a different block-based programming language 

that was less intuitive for their participants than the EV3-G programming language used 

in this study to demonstrate comprehension of the syntactic aspects of programming. 

Another possibility is that the activities and challenges in this study improved the 

proficiency of participants in basic programming procedures beyond the level of 

comprehension of participants in the Kim et al. (2018) study. This study provides 

additional research to compliment Kim et al.’s (2018) findings and add to the limited 

literature on preservice teachers’ comprehension of basic programming procedures.  

In addition, Kim et al. (2018) found that preservice teachers exhibited difficulty 

with debugging a block-based programming language while programming robots. 

Jayathirtha, Fields, and Kafai (2018) have explained that debugging “can reveal 

significant information about student learning” (p. 1). Kim et al. (2018) noted that 
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debugging was “indeed difficult for preservice teachers” as an overarching finding of 

their study. In the Basic Procedures unit, the question participants scored the lowest on 

was a question that assessed participants’ abilities to spot an error in a program. 

Participants answered question #4 correctly on the posttest only 28% of the time (Gain = 

.06). While one question specifically addressing debugging in this section might not have 

extensively assessed participants’ debugging skills, it offered insight into participants’ 

comprehension scores on this unit and was informed by prior studies utilizing one 

specific debugging question (Jaipal-Jamani & Angeli, 2017; Lister et al., 2004). These 

findings parallel those by Kim et al. (2018), who found that preservice teachers struggled 

with debugging. Kim et al. (2018) theorized that it is difficult for even those who are 

advanced programmers to debug a program as “it requires mindful, persistent 

engagement” (p. 769). Similarly, Falloon (2016) noted that debugging was a complicated 

process because it necessitates perseverance and a systemic approach, which is often 

discounted by students who adopt random, unsystematic, hasty approaches. There is little 

research on debugging in block-based programming languages (Kim et al., 2017, 2018); 

therefore, it is my supposition that participants’ scores might not have improved as much 

as in other units because they did not adopt disciplined, systematic debugging 

approaches.  

Overall, scores on the Basic Procedures unit indicated that educational robotics 

had a positive effect on preservice teachers’ comprehension of programming concepts. 

The Basic Procedures unit had the second-highest increase out of all the units, slightly 

behind the Advanced Procedures unit. While data show significant gains from the pretest 

to posttest, participants’ scores on this unit suggest an incomplete understanding of 
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fundamental programming procedures related to debugging. Existing literature (Falloon, 

2016; Kim et al., 2017, 2018), in combination with this study’s results, suggests that 

while educational robotics can be used to increase preservice teachers’ comprehension of 

basic procedures in programming, debugging remains a difficult skillset for this 

population. 

Advanced procedures. Advanced procedures are defined by Pea and Kurland 

(1984) as “higher level executive and metaplanning decisions such as what strategic 

approach to take to the problem” (p. 160). Advanced procedures combine syntactic and 

semantic programming knowledge into strategic programming decisions (McGill & 

Volet, 1997). Participants’ comprehension of advanced procedures increased significantly 

from the pretest (Mdn. = .20, SD = .18) to posttest (Mdn. = .70, SD = .30) and indicated 

that there was a statistically significant effect in participants’ comprehension of advanced 

procedures concepts (Z = -3.43, p = .001, r = -.57). This section will discuss the findings 

of the Advanced Procedures unit and situate them within the existing literature. 

Participants’ average posttest scores were the highest on the Advanced Procedures 

unit. This unit also showed the greatest increase out of all the units from an average of 

22% on the pretest to 66% on the posttest. The Advanced Procedures unit showing the 

greatest increase among all the units – even over Basic Procedures – may be explained by 

schema theory (Kalyuga, 2010; Sweller, 1994). Previously learned Basic Procedures unit 

concepts filed as long-term memory may have been updated with conceptually similar, 

yet new Advanced Procedures unit schema, adding to the participants’ programming 

comprehension. Chunks associated with previous knowledge from the Basic Procedures 

unit were updated with new schemas as new material was learned, which contributed 
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towards a deeper understanding of those concepts (Sweller, 1994). Because Advanced 

Procedures concepts built on Basic Procedures concepts, the participants could rely on 

previous knowledge, which contributed toward a deeper comprehension and a larger 

increase on the Programming Comprehension Assessment.  

Scores on the Advanced Procedures unit indicated that educational robotics had a 

positive effect on preservice teachers’ comprehension of programming concepts. The 

findings on the Advanced Procedures unit echo those by Kay et al. (2014). In their 

research, Kay et al. (2014) indicated that their mixed in-service and preservice 

participants’ (N = 22) correct answers on the movement programming question of their 

content knowledge assessment that conceptually aligned to this study’s Advanced 

Procedures unit increased dramatically. In Kay et al.’s (2014) study, participants’ scores 

increased from 40% to 100% after three days of robotics workshops. 

The question with the largest average improvement was question #9 (Gain = .61), 

which participants answered correctly over 66% of the time on the posttest. Question #9 

assessed participants’ syntactic and semantic comprehension of programming turns. This 

data might suggest that participants were comfortable with combining syntactic and 

semantic programming comprehension to solve problems. The mazes utilized in the 

study’s Advanced Procedures unit exercised the skills participants needed to solve 

question #9. Thus, qualitative findings in Theme 1 – participants perceived that a 

problem-based robotics curriculum improved their intrinsic motivation toward 

programming – could provide an explanation of the motivational increase in the 

Advanced Procedures unit. In the individual interviews, the Maze Challenge from the 

Advanced Procedures unit of instruction was the most-noted fun and enjoyable 
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curriculum element. My speculation is that because the highly enjoyed Maze Challenge 

was embedded within the instructional unit that had the highest comprehension 

improvement (Advanced Procedures) it may indicate that the Maze Challenge motivated 

participants to learn and contributed toward participants’ leap in comprehension within 

that unit.  

A question with the lowest average on the posttest was question #8. This question 

assessed participants’ abilities to pick out the program which included the correct 

strategic programming to move a robot along a path that includes the hypotenuse of a 

triangle. This data indicated that participants had a shallow comprehension of strategic 

programming within the Advanced Procedures unit. One possible reason for the low 

scores on this question might be that the introduction of the Pythagorean Theorem (i.e., a2 

+ b2 = c2) confused participants. However, deductive reasoning and code tracking could 

be used to eliminate incorrect answers to this question. Therefore, participants might 

simply have mis-tracked the program from start to finish. Further data on this question is 

needed to inform future teaching and assessment. 

Participants’ posttest scores were significantly higher than their pretest scores on 

the Advanced Procedures unit. Further, participants’ average posttest scores were the 

highest out of all units. Overall, these collective findings suggest that educational robotics 

can be used to significantly increase preservice teachers’ comprehension of advanced 

programming procedures. 

Control structures. Control structures – also known as conditionals or flow 

control – include programming concepts such as loops and switches that guide the course 

of action within a program based on special instructions (Bers et al., 2014). Participants’ 
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comprehension of control structures increased from the pretest (M = .26, SD = .17) to the 

posttest (M = .58, SD = .26), t(17) = 4.68, p < .001, Cohen’s d = 1.10. While participants’ 

scores increased significantly on the Control Structures unit which indicated that 

educational robotics had a positive effect on preservice teachers’ comprehension of 

programming concepts, this increase was less pronounced compared to other units. This 

section will discuss the findings of this study related to the Control Structures unit and 

connect these findings to existing literature. 

Participants’ average scores on this unit indicated a significant increase, but they 

reflected a limited comprehension of control structures in general. Conceptually, the 

Control Structures unit was designed as the second-most complex topic of the instruction, 

and the unit’s posttest scores were fittingly the second lowest on average (M = .58, SD = 

.26). Similarly, studies that used text-based programming languages (Ahmadzadeh et al., 

2007; Fitzgerald et al., 2008) as well as block-based programming languages (Chiu & 

Huang, 2015; Kim et al., 2018) have pointed to participants’ most produced errors 

occurring in control structures concepts. One-third of the interviewees (n = 2) commented 

that the Control Structures concepts were difficult and needed more time dedicated to 

them in the instruction. This research corroborated Kim et al.’s (2018) findings which 

indicated that preservice teachers often struggled with “improperly defined conditionals” 

(p. 772). Therefore, while the increase in this unit was significant, participants exhibited a 

lower increase than in other units.  

This unit’s lower increase may be attributed to participants’ struggles with 

multiple loops. Kim et al. (2018) explained that preservice teachers incorrectly designed 

their programs, “omitting loop or other commands that had to be included to complete the 
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program” (p. 772). This study’s findings indicated that preservice teachers had trouble 

with multiple loops in particular. To explain, the question with the largest improvement 

in the unit was #15 (Gain = .44), which assessed participants’ abilities to modify a single 

loop in an algorithm to execute a specific route for the robot. My speculation is that 

participants scored highly on this question due to its relative simplicity in only utilizing 

one loop. In addition, question #12 had the lowest gain (.17) out of all the questions on 

the unit, possibly because it had the highest pretest average score out of all the questions 

on the assessment (.56). This question required participants to correctly simplify a 

program using a single loop. This data indicated that over half the participants had an 

initial comprehension of the concept of looping. However, when participants were given 

multiple loops, they struggled. For example, question #11 addressed multiple loops and 

had the lowest average score on the posttest in the unit (.39). This question evaluated 

participants’ abilities to trace a program and determine its outcome using multiple loops. 

Therefore, participants demonstrated competency and comprehension of simplifying 

programs using one loop but had difficulty tracing the outcome of programs utilizing 

multiple loops.  

Participants’ scores increased significantly on the Control Structures unit which 

indicated that educational robotics had a positive effect on preservice teachers’ 

comprehension of programming concepts. However, this increase was the second lowest 

of all units. Participants excelled with problems featuring a single loop but struggled with 

tracing multiple loops in an algorithm. In sum, these findings suggest that educational 

robotics can be used to significantly increase preservice teachers’ comprehension of the 
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control structures; however, this population struggles with depth of comprehension of 

looping. 

Variables. Variables are values in a program that can change based on different 

instructions and inputs within the program. Participants’ comprehension of variables 

increased from the pretest (M = .19, SD = .17) to the posttest (M = .51, SD = .32), t(17) = 

3.69, p = .002, Cohen’s d = .87. This section will discuss the findings related to the 

Variables unit and relate these findings to existing literature.  

The increase in variable comprehension by participants in this study may be best 

explained by the visualization and concrete modeling of programming through the 

actions of the robots. According to Ala-Mutka (2004) recursion, or the use of loops with 

variables to complete smaller tasks that reiterate to complete a larger task, is a 

programming concept which can be taught through visualizations “on [a] high level” (p. 

8). Mayer’s (1981) programming comprehension model which borrowed concepts from 

the IPM (Newell & Simon, 1972) was used by Bayman and Mayer (1983) to evaluate 

programming comprehension. As a result of their study, Bayman and Mayer (1983) 

determined that novices learning programming required more concrete models of 

programs to understand abstract programming functions.  

Variables are often considered difficult to comprehend by novices (Grover & 

Basu, 2017; Kuittinen & Sajaniemi, 2004), and the Variables unit of instruction was 

correspondingly the most advanced of the intervention. Therefore, it is fitting that this 

unit had the lowest pretest (M = .19, SD = .17) and posttest (M = .51, SD = .32) scores on 

average. While scores increased significantly, these data suggest that participants did not 

have as deep of a comprehension of variables as other programming concepts. This study 
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confirms Kim et al.’s (2018) findings that preservice teachers commonly demonstrate 

errors in defining values of variables while programming robots and Govender and 

Grayson’s (2008) findings that in-service and preservice teachers find the concept of 

variables confusing. In their study that utilized block-based programming, Grover and 

Basu (2017) noted that beginners had difficulty with using “mathematical and logical 

expressions, naming variables, and assigning suitable data types and structures” (p. 268). 

Further, variables can be difficult to define by teachers, as Meerbaum-Salant et al. (2013) 

found. In their study, Meerbaum-Salant et al. (2013) observed that mathematics teachers 

and computer science teachers had different conceptual understandings of variables. 

Meerbaum-Salant et al. (2013) attributed the inaccurate mathematics conceptual 

understanding of variables to the math students’ struggles with the concept. Govender 

and Grayson (2008) found that their mixed group of in-service and preservice teachers 

learning to program in Java, a text-based programming language, felt that variables were 

confusing and complicated. 

The question with the largest improvement was #17. This question assessed 

participants’ comprehension of variables’ syntactic and semantic elements within a 

switch in a program. While this question required participants to track a program through 

a switch and then use their syntactic and semantic programming comprehension, 

participants only had to explain the variable’s influence on the program. Explaining falls 

under the middle analyzing tier of Bloom’s Taxonomy, a continuum of ways in which 

students can demonstrate understanding arranged from simple to complex (Anderson, 

Krathwohl, & Bloom, 2001). Therefore, this question might have been less difficult to 

complete than the others in the unit. 
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The final question, #20, was answered correctly only 22% of the time on the 

posttest. This question also demonstrated the smallest gain from pretest to posttest (Gain 

= .17). This question was the most difficult of the assessment as it required participants to 

understand variables as well as apply all the other programming concepts of the 

intervention to fill in appropriate values to execute a program. This low increase might be 

attributed to this question requiring participants to create a program with different values 

in a fill-in-the-blank format. Creating is the highest tier, and the most complex way 

students can demonstrate understanding in Bloom’s Taxonomy (Anderson et al., 2001). 

Therefore, this question was fundamentally complex, which might have led to its low 

increase. 

While the average scores did increase significantly for the Variables unit, they did 

not increase to the extent of the other units. One-third of the interviewees (n = 2) 

mentioned that the concept of variables was difficult for them. Overall, these findings 

suggest that educational robotics can be used to increase preservice teachers’ 

comprehension of variables but to a lesser extent than other programming concepts due to 

the difficulty in obtaining a high-level understanding of relevant concepts.  

Research Question #2: How and to what extent does educational robotics influence 

preservice teachers’ motivation related to programming? 

The integrated quantitative and qualitative findings of this study indicate that 

preservice teachers’ motivation related to programming can be improved significantly 

through educational robotics’ influences on (1) intrinsic motivation, (2) career 

motivation, (3) self-determination, (4) self-efficacy, and (5) motivation to integrate 

programming into teaching. Both quantitative and qualitative data were gathered to 



www.manaraa.com

 

181 

investigate the research question addressing motivation. Motivation is described by Johns 

(1996) as the extent to which persistent effort is sustained toward a specific goal. 

Motivation is an abstract concept that is comprised of many different indicators (Ball, 

1977; Jenkins & Davy, 2002; Law et al., 2010).  

Participants’ overall motivation increased from the pre-survey (M = 2.38, SD = 

0.84) to the post-survey (M = 3.48, SD = 0.64), t(17) = 6.10, p < .001, Cohen’s d = 1.44. 

Participants entered the study with low motivation related to programming. The lowest 

average Likert scale level of motivation on the pre-survey was 1.32/5, and the highest 

was 3.92/5 (M = 2.38, SD = 0.84). After the intervention, participants’ average 

motivation levels increased significantly. The lowest average motivation conveyed on the 

post Programming Motivation Survey was 2.24/5, and the highest was 4.68/5 (M = 3.48, 

SD = 0.64). However, not all participants’ motivation levels on the Programming 

Motivation Survey improved. While 17 of the 18 participants experienced gains in their 

motivation, one participant’s motivation level decreased from the pre-survey to the post-

survey. My speculation is that one participant did not find educational robotics to be 

motivational. None of the participants’ motivation levels remained the same. These 17 of 

18 increased levels of agreement on Likert scale statements in the Programming 

Motivation Survey suggest that the educational robotics positively impacted participants’ 

motivation related to programming. 

Quantitative findings explain that educational robotics positively influence 

preservice teachers’ motivation related to programming to statistically significant extents. 

Qualitative themes explained and reinforced that educational robotics positively influence 

preservice teachers’ motivation related to programming through (1) Intrinsic Motivation, 
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(2) Career Motivation, (3) Self-Determination, (4) Self-Efficacy, and (5) MTIPIT. These 

combined findings suggest that preservice teachers’ motivation related to programming 

can be improved through educational robotics. The following paragraphs will discuss 

participants’ motivation related to programming by comparing the qualitative themes 

with the quantitative survey findings. 

Intrinsic motivation. Integrated findings of this study (see Table 4.16) indicated 

that intrinsic motivation improved in preservice teachers. Intrinsic motivation is one’s 

internal drive to complete tasks (Deci & Ryan, 2000; Taylor, 1916). Enjoyment of and 

interest in a task link are linked to intrinsic motivation (Deci & Ryan, 2000; Law et al., 

2010). Preservice teacher participants in studies by Kucuk and Sisman (2018) and Kim et 

al., (2015, 2018) emphasized the importance of maintaining their intrinsic motivation 

throughout the robotics activities. This section will discuss the findings of this study 

related to the quantitative Intrinsic Motivation subscale and Theme 1 in the qualitative 

findings – participants perceived that a problem-based robotics curriculum improved their 

intrinsic motivation toward programming – and relate them to the existing literature. 

Participants’ intrinsic motivation significantly increased from the pre-survey (M = 

2.23, SD = 0.93) to the post-survey (M = 3.11, SD = 0.96), t(17) = 4.26, p = .001, 

Cohen’s d = 1.00. Interview data affirmed and explained participants’ growth of intrinsic 

motivation. Theme 1 from the qualitative data indicated that intrinsic motivation 

appeared to be substantially impacted by the intervention’s use of problems in the form of 

robotics programming activities and challenges. All interviewees (n = 6) indicated that 

the activities and challenges were intrinsically motivational. In particular, the Maze 

Challenge and Maze Challenge with Variables were reported to be motivating to 
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participants. It can be logically inferred that the activities and challenges using the 

educational robotics increased participants’ total intrinsic motivation.  

This study provides results that are consistent with previous research (Kim et al., 

2015, 2018; Kucuk & Sisman, 2018) that found that preservice teachers perceived 

educational robotics to be intrinsically motivating while learning to program. This study’s 

combined findings paralleled those of Kucuk and Sisman (2018), who found that their 

preservice teacher population considered educational robotics activities and learning by 

doing to be fun. This study’s findings support those of Kim et al. (2015, 2018) and Kucuk 

and Sisman (2018) while also extending their findings by pinpointing high intrinsic 

motivation gains by participants in the areas of interest and enjoyment. On the 

Programming Motivation Survey, intrinsic motivation exhibited the largest average 

increases in two statements: #3 “Learning programming is interesting” and #19 “I enjoy 

learning programming” (Gain = 1.27). On the post-survey, participants also had the 

highest level of agreement with statement #3 within the Intrinsic Motivation subscale 

(3.78/5). Theme 1 explained that participants experienced increased interest and 

enjoyment due to the problems they solved. Kopcha et al. (2017) explained that authentic 

problems afford learners opportunities to solve the problem based on the lessons they 

learned through real-life scenarios. Different interviewees used words like “fun,” 

“enjoyable,” and “interesting” to describe the challenges. 

Educational robotics can be used to demonstrate physical representations of 

abstract concepts, such as equations (Han, 2013). Theme 1 also explained that 

participants were interested in the representation of abstract concepts in concrete form 

through the educational robotics curriculum, which boosted their intrinsic motivation 
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levels. This finding is supported by the research of Bayman and Mayer (1983) that 

investigated Mayer’s (1981) model of programming comprehension and suggested that 

novice programmers should be given concrete models of programs in order to build their 

mental models. Piaget (1967, 1973) explained that constructivism is the building of 

abstract knowledge structures in one’s mind through concrete experiences. Therefore, 

participants were intrinsically motivated by constructivist processes of representing 

abstract concepts in concrete form through educational robotics. 

These quantitative and qualitative findings on intrinsic motivation reinforce those 

by Kim et al. (2015, 2018) and Kucuk and Sisman (2018), which stated that educational 

robotics are intrinsically motivating for preservice teachers. Further, this study adds to the 

literature on preservice teachers learning programming through educational robotics by 

explaining that preservice teachers’ intrinsic motivation can be boosted by implementing 

authentic problem-solving challenges and representing abstract concepts in concrete 

form.  

In summation, quantitative data indicated significant gains in participants’ 

intrinsic motivation in the areas of interest and enjoyment. These results were confirmed 

and explained by the qualitative data, which indicated that authentic problem-solving 

through educational robotics activities and challenges, as well as representing abstract 

math in concrete form, boosted participants’ interest and enjoyment. Existing literature 

(Kim et al., 2015, 2018; Kucuk & Sisman, 2018), in combination with this study’s 

results, suggest that educational robotics can be used to increase preservice teachers’ 

intrinsic motivation related to programming. 
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Career motivation. Integrated findings of this study (see Table 4.16) indicated 

that career motivation improved in preservice teachers. Career motivation includes one’s 

beliefs of a topic’s career relevance as well as one’s effort to enhance their career 

possibilities (Arwood, 2004; Glynn et al., 2009). While careers are often associated with 

extrinsic factors such as money, Glynn et al. (2009, 2011) found a close relationship 

between intrinsic motivation and career motivation in science. This section will discuss 

the findings of this study related to the quantitative Career Motivation subscale and 

Theme 2 in the qualitative findings and relate them to the existing literature. 

The medians of the pre-survey (Mdn. = 3) Career Motivation and post-survey 

(Mdn. = 3.72) Career Motivation increased significantly (Z = -3.58, p < .001, r = -.6). 

Career Motivation was tied for the highest average agreement level on the post-survey (M 

= 3.72, SD = 0.59) with MTIPIT. However, the Career Motivation subscale also 

exhibited the lowest subscale increase, which could be attributed to participants having 

high agreement with the statements in this subscale on the pre-survey. Participants’ 

career motivation only increased on average from 2.94 to 3.72 (Gain = .78). Qualitative 

interview data in Theme 2 – Educational robotics affected participants’ career motivation 

towards programming – supported the quantitative data by describing participants’ high 

levels of career motivation. For example, participants noted that teachers who could teach 

programming were in “high demand,” as Jennifer explained. These data indicated 

increased career motivation among participants. 

Research by Kim et al. (2015) found that preservice teachers who learned 

programming through educational robotics had a small but meaningful increase in their 

interest in STEM careers. Although this increase was relatively low, Kim et al. (2015) 
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categorized this finding as “noteworthy considering that their career goals were already 

set to become an early childhood educator” (p. 27). The findings of this study run parallel 

to those of Kim et al. (2015) and are also noteworthy because participants’ highest 

combined pre and post motivation levels were in the Career Motivation subscale even 

though none of them were on a path to become computer science teachers. Career 

motivation increased most dramatically on statement #23, “My career will involve 

programming” (Gain = 1.22). In Theme 2, many participants voiced their perspectives 

that schools and the economy were moving toward more technology-rich futures. The 

large increase for this subscale could be attributed to the intervention’s use of different 

lectures about new state standards for K-8 computer science as well as videos showcasing 

how teachers are implementing computer science into their instruction. While high pre-

survey career motivation indicated that participants were cognizant of the current and 

future outlook of the economy before they took part in the intervention, they may not 

have been informed about the relevance and imminence of computer science standards 

for the grade level they plan to teach. The statement with the lowest increase in career 

motivation between pre and post was statement #10 (Gain = .44), “Knowing 

programming will give me a career advantage.” This lower increase could be attributed to 

how high participants’ level of agreement was on this statement on both the pre-survey 

and post-survey. Participants’ pre-survey level of agreement (3.67/5) was the highest 

initial level of agreement of the subscale. Correspondingly, their post level of agreement 

(4.11/5) was also the highest level of agreement within the subscale on the post-survey. 

Again, this small increase is noteworthy, as described by Kim et al. (2015), because 

participants’ career motivation was already high, and the educational robotics 
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intervention increased that high career motivation even more. These high levels are 

reflected in Theme 2. Participants stated that learning programming would give them 

career advantages in the interviews. For example, Simon explained that the ability to 

walk into a teaching interview with programming as a skill on a resume “goes a long 

way.” These findings demonstrate that participants exhibited increases in their already 

high career motivation related to programming. 

The qualitative findings from Theme 2 can add to the literature about preservice 

teachers’ career motivation. Theme 2 offers insights into the reasons preservice teachers 

experience increased career motivation. Theme 2 presented two categories of preservice 

teachers’ career motivation: (1) to give themselves more advantages or options in job 

seeking, and (2) to expand their skillsets for teaching their future students. These 

categories can be used by preservice teacher educators as they design their curricula to 

boost career motivation. 

The combined quantitative and qualitative findings of this study indicated 

significant gains in participants’ career motivation. However, because participants 

initially rated the Career Motivation subscale statements at such a high level, gains were 

not as large as in other subscales. It is my supposition that because all the participants in 

this study (N = 18) were between the ages of 18 and 23, it is likely that the increasing 

importance of technology that they have experienced in their own lifetimes has led them 

to share such high pre-survey career motivation related to programming. The 

instructional materials showcasing the new state computer science standards and data on 

jobs in the computer science field further increased this high career motivation related to 

programming. Existing literature, in combination with this study’s results, suggest that 
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preservice teachers’ career motivation related to programming can be increased through 

educational robotics. 

Self-determination. Integrated findings of this study (see Table 4.16) indicated 

that self-determination improved in preservice teachers. Self-determination is the control 

learners have over their learning and includes autonomy, competence, and relatedness 

(Black & Deci, 2000; Cullen & Greene, 2011; Ryan & Deci, 2020). Research by McGill 

(2012) found that college students struggled to identify the relevance of learning 

programming using educational robotics to their daily lives. This section will discuss the 

findings of this study related to the quantitative Self-Determination subscale as well as 

Theme 3 in the qualitative findings – participants experienced self-determination towards 

programming in the face of robotics challenges – and relate them to the existing 

literature. 

Participants demonstrated the largest increase to their motivation in the subscale 

of Self-Determination. Participants’ self-determination increased significantly the pre-

survey (M = 1.99, SD = 0.98) to the post-survey (M = 3.39, SD = 0.72), t(17) = 7.07, p < 

.001, Cohen’s d = 1.67. Cullen and Greene (2011) noted that “consistent with Self-

Determination Theory in that in order to be motivated to achieve a goal” related to 

technology integration, preservice teachers “must feel competent and able to do the task 

at hand” (p. 42). Self-determination can be improved through confidence-building (Ryan 

& Deci, 2000, 2020). Participants’ building of competence likely contributed to their 

large increase in self-determination. All but one participant (n = 17) demonstrated 

improved comprehension of programming concepts between the pre and post 

Programming Comprehension Assessment. These increases improved perceptions of 
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competence among participants. The competence of participants may have been most 

directly impacted by the achievement of completing the different activities and 

challenges in the intervention. For example, Mariah and Randy stated that by 

accomplishing the different challenges, they increased their competence and confidence. 

These combined quantitative and qualitative findings are concordant with those of Cullen 

and Greene (2011). 

Kim et al. (2015) found that preservice teachers put in more effort when they 

encountered difficulties while programming educational robotics. According to Kim et al. 

(2015), one of the methods the preservice teachers used to solve problems was “seeking 

help from peers” by “exchanging ideas, questioning, and answering questions in 

collaborative small groups” (p. 26). Self-determination increased most dramatically on 

statement #5, “I put enough effort into learning programming” (Gain = 1.89). This 

statement also had the highest agreement on the post-survey (4.17/5) among the Self-

Determination subscale statements. Qualitative data from Theme 3 indicated that 

participants used multiple different CPS strategies (Roschelle & Teasley, 1994) when 

they encountered difficulty. For instance, participants noted in the interviews 

brainstorming with partners and approaching other groups for help were ways they put 

extra effort into learning programming. It can be inferred that the CPS strategies 

described by participants in the qualitative findings reflect participants’ quantitative 

increase in their satisfaction level with their effort while learning programming. This 

study’s combined quantitative and qualitative findings of effort and CPS strategies 

between groups confirm Kim et al.’s (2015) findings that preservice teachers using 

educational robotics put in more effort to solve problems through collaboration. 
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Overall, participants displayed the largest increases in this subscale. Participants’ 

large increases in competence and confidence correlated with their large increases in self-

determination (Cullen & Greene, 2011). The quantitative data was supported by the 

qualitative data from Theme 3. Qualitative evidence supported the findings of Kim et al. 

(2015) that preservice teachers’ extra effort while learning programming through robotics 

occurred through CPS strategies. Existing literature paired with this study’s findings 

indicated that preservice teachers’ self-determination related to programming could be 

increased through educational robotics. 

Self-efficacy. Integrated findings of this study (see Table 4.16) indicated that self-

efficacy improved in preservice teachers. Self-efficacy is defined as learners’ beliefs in 

their abilities to achieve a learning task (Bandura, 1997; Martin, 2007). Self-efficacy can 

be improved through learners experiencing success completing similar tasks (Bandura, 

1997). Self-efficacy has been found to be low with educators teaching computer science 

concepts (Grover & Pea, 2013). Contributing factors to teachers’ low self-efficacy 

include anxiousness with learning how to use new technologies in class (Meerbaum-

Salant et al., 2013) and using new and unfamiliar teaching materials (Curzon et al., 

2009). Self-efficacy can impact teachers’ usage of technology in the classroom (Ertmer & 

Ottenbreit-Leftwich, 2010; Ertmer et al., 2012), and teachers with higher levels of self-

efficacy are more committed to teaching (Chen & Yeung, 2015; Gunning & Mensah, 

2011). This section will discuss the findings of this study related to the quantitative Self-

Efficacy subscale and Theme 4 – participants perceived that the gradually increasing 

level of difficulty in the robotics curriculum improved their self-efficacy about 
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programming from initially low levels – in the qualitative findings and relate them to the 

existing literature. 

Participants’ exhibited the second-largest increase in the subscale of Self-

Efficacy. Participants’ self-efficacy increased significantly from the pre-survey (M = 

2.17, SD = 0.82) to post-survey (M = 3.47, SD = 0.84), t(17) = 5.75, p < .001, Cohen’s d 

= 1.36. The factors of past experiences, observed experiences, coaching, visualization of 

future success, and experience of physical and emotional states contribute toward self-

efficacy (Bandura, 1997; Martin, 2007). Evidence from Theme 4 – participants perceived 

that the gradually increasing level of difficulty in the robotics curriculum improved their 

self-efficacy about programming from initially low levels – supported the participants’ 

increased quantitative self-efficacy.  

This study’s self-efficacy findings parallel the literature. For example, research by 

Jaipal-Jamani and Angeli (2017) indicated that educational robotics could improve 

preservice teachers’ self-efficacy pertaining to programming. Further, Kay et al.’s (2014) 

findings centered on confidence and found that in-service teachers’ self-efficacy related 

to learning and teaching programming improved through the use of educational robotics. 

Kay et al.’s (2014) findings indicated that 95% of participants were quite or extremely 

confident in learning to program while 100% were quite or extremely confident with 

teaching programming after three days of robotics workshop. In this study’s Self-Efficacy 

subscale, participants’ agreement levels increased most dramatically on statement #4, “I 

am confident in learning programming” (Gain = 1.83) on the Programming Motivation 

Survey. Pre-survey responses to the statements in this subscale were low, which could be 

attributed to this being all but one of the participants’ first experiences with 
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programming. Research by Rogerson and Scott (2010) explained that students often 

exhibit apprehension and fear related to programming, which in turn can cause negative 

perceptions of programming. Participants’ initial lack of confidence in learning 

programming could be attributed to what Rogerson and Scott (2010) described as “the 

nature of programming that gives rise to [negative] feelings” (p. 147). Once participants 

experienced programming through the educational robotics, their fears were diminished, 

and their confidence improved. Most qualitative data that demonstrated participants’ 

increased confidence came from their explanations of their improved programming 

comprehension. As described in Theme 4, participants used words such as “zero” or a 

“blank slate” to define their initial programming comprehension and self-efficacy. This 

study echoed findings by Bower et al. (2017) that reported that teacher participants had 

low levels of self-confidence in teaching computational thinking. However, most 

participants interviewed in this study stated that their perceptions of their programming 

comprehension improved. For example, Paula explained that on a scale of “one to 10, I 

am probably a seven” up from an initial level of zero. The quantitative increases in 

confidence on the Self-Efficacy subscale are supported by the participants’ qualitative 

remarks about increased competence and confidence. 

This study can offer additional insights into factors that foster preservice teachers’ 

self-efficacy related to programming. While Jaipal-Jamani and Angeli (2017) and Kay et 

al. (2014) noted their participants’ increases in self-efficacy, these increases were 

uncovered through quantitative analyses without attribution of the increases to specific 

factors. Qualitative evidence from Theme 4 attributed the participants’ enhanced self-

efficacy to the curriculum’s design of gradually increasing the level of difficulty of the 
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concepts in the units. For example, Katy pointed out, “You're really helping conceptually 

building the foundations of like the other stuff that we learned.” Kuittinen and Sajaniemi 

(2004) noted that within constructivist teaching, it is “necessary that new knowledge is 

actively built on the top of existing knowledge” (p. 58). When teaching programming, 

Kuittinen and Sajaniemi (2004) explained, “It is important that the introduction of a new 

role is built on the top of existing information and that the distinction between the roles is 

explained properly,” which builds on the conceptual foundations of previous learning, 

moving the learner toward more difficult concepts (p. 58). The findings of this study 

extend the findings of Jaipal-Jamani and Angeli (2017) and Kay et al. (2014) by 

revealing a factor that can increase preservice teachers’ self-efficacy related to 

programming. Utilizing a curriculum with a gradually increasing difficulty level when 

teaching programming has been recommended in a conceptual piece in the literature 

(Kuittinen & Sajaniemi, 2004), but without study data supporting this teaching strategy. 

The insight into self-efficacy provided by this study can be used to guide preservice 

teacher educators as they design curricula to improve their students’ self-efficacy related 

to programming by slowly and carefully increasing the difficulty of the concepts covered 

in the instruction. 

In sum, quantitative and qualitative data from this study indicated significant 

gains in participants’ self-efficacy. Participants initially held low levels of self-efficacy 

related to programming. Participants’ qualitative data indicated that they overcame fear, 

which boosted their confidence related to programming. This study confirmed findings 

by Bower et al. (2017), who reported their teacher participants had low levels of self-

confidence in teaching computational thinking. In addition, this study’s combined 



www.manaraa.com

 

194 

quantitative and qualitative findings reinforced those by Jaipal-Jamani and Angeli (2017) 

and Kay et al. (2014) and extended the available literature by providing qualitative data 

which noted that preservice teachers’ self-efficacy related to programming could be 

improved through a curriculum that gradually increases in difficulty. Existing literature 

paired with this study’s findings indicated that preservice teachers’ self-efficacy related 

to programming could be increased through educational robotics. 

Motivation to integrate programming into teaching (MTIPIT). Integrated 

findings of this study (see Table 4.16) indicated that MTIPIT improved in preservice 

teachers. The MTIPIT subscale analyzed the reasons an individual wanted or did not 

want to use and teach programming based on intrinsic, extrinsic, altruistic, and contextual 

factors. MTIPIT was based on teacher motivation, which Han and Yin (2016) explained 

as including the factors of teachers’ inherent interest in teaching, their lifelong 

commitment to teaching, as well as discouraging factors such as bad experiences with 

teaching. This section will discuss the findings of this study related to the quantitative 

MTIPIT subscale and Theme 5 in the qualitative findings – participants perceived 

programming as a viable fit in their future classrooms – and relate them to the existing 

literature. 

Participants’ MTIPIT increased significantly from the pre-survey (M = 2.59, SD = 

1.04) to the post-survey (M = 3.72, SD = 0.75), t(17) = 5.09, p < .001, Cohen’s d = 1.20. 

The post-survey MTIPIT subscale average (M = 3.72) was tied for the highest post-

survey subscale average with Career Motivation. Sisman and Kucuk (2019) found that 

the idea that motivated their preservice teacher participants the most while they learned 

programming was that they could learn to teach their future students programming 
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through educational robotics. Therefore, this study’s findings were consistent with those 

of Sisman and Kucuk (2019) because the MTIPIT subscale was tied for the highest post-

survey motivation level of all the subscales. Interview data presented in Theme 5 

provided explanations for the high MTIPIT levels and why MTIPIT increased. 

MTIPIT increased most dramatically on statements #21 “I enjoy teaching 

programming to others” and #22 “I can teach programming in my future courses” (Gain = 

1.39). The high agreement with these statements could be attributed to participants’ 

experiences with programming the robots. As outlined in Theme 5, most interviewees (n 

= 5) demonstrated an improved intention to integrate programming into teaching, and 

two-thirds of the interviewees (n = 4) had an idea for how they would integrate 

programming into their instruction. These quantitative and qualitative findings combined 

indicated gains in participants’ MTIPIT. Parallel results have been attained in the 

literature. For example, Jaipal-Jamani and Angeli (2017) reported that of their preservice 

teacher participants (N = 21), over 85% were motivated to integrate block-based 

programming and educational robotics into their elementary science classes as a result of 

a science methods course intervention. Similarly, results from research by Kaya et al. 

(2015) showed that out of their preservice teacher participants (N = 11), 100% were 

motivated to integrate block-based programming and educational robotics into their 

instruction.  

While this study’s findings suggested that participants enjoyed the idea of 

teaching programming to students and mentioned confidence that they can teach the 

topic, quantitative and qualitative data indicated that their MTIPIT is tempered by the 

uncertainty of how they will integrate programming into their curricula. The statement 
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with the lowest increase between pre and post was a tie among statement #18 “I plan to 

incorporate programming into my teaching” and statement #2 “Teaching programming 

would benefit my students” (Gain = .94). These results are counterintuitive, given the 

large increases in the other statements. Low increases in these statements might be 

attributed to participants feeling that they need more instruction in programming and 

participants being unsure of programming’s fit with their future subject area. Simon 

explained that he was planning on teaching English and social studies and was hesitant 

because he was unsure of the exact curriculum fit for programming. Katy noted her 

increased perception of the potential of programming in the classroom but felt as though 

she still needed to learn more about integrating it. Similar perspectives might explain why 

participants had lower increases in their motivation to incorporate programming into their 

teaching. These combined quantitative and qualitative findings support Bower et al.’s 

(2017) findings that according to teachers’ post-workshop survey responses, they 

characterized themselves as still somewhat hesitant to integrate computer science 

concepts into their instruction due to perceptions that they did not yet have an adequate 

level of knowledge, experience, and integration strategies. It should be noted that even 

though preservice teachers may have positive attitudes toward programming, this does 

not mean they will implement it in their future teaching. Participants’ perceptions of their 

future teaching context may impact these results. However, these results do indicate, as 

Cullen and Greene (2011) explained, that participants “are ready to consider new 

paradigms of classroom technology integration” (p. 43).  

This study offers insights into the extent to which participants can be motivated to 

integrate programming into their future instruction. Nearly all participants interviewed 
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explained that they wanted to integrate programming into their future teaching. Theme 5 

showed that preservice teachers are open to having their perspectives changed from not 

valuing programming in the classroom to valuing programming in the classroom. For 

example, Paula explained, “when you first proposed the idea that we would be using 

programming and stuff in this class I didn't really think that it would be useful at all.” 

However, this perspective changed because “going through it I [Paula] realized like it is 

very useful so it's kind of done a complete 180.” As described by Paula, participants’ 

increased valuation of programming in education, combined with their experiences with 

educational robotics, improved their intention to integrate programming into their future 

instruction. Many of the interviewees (n = 4) had already devised specific integration 

strategies. Therefore, preservice teachers’ MTIPIT can be improved through educational 

robotics from a level of disinterest to where they are motivated and have devised 

strategies to integrate programming into future instruction. 

Quantitative findings showed statistically significant increases in participants’ 

MTIPIT, and qualitative data affirmed and explained these findings. Existing literature 

paired with this study’s findings indicated that preservice teachers’ MTIPIT could be 

increased through educational robotics. This study adds to the literature by explaining the 

extent to which MTIPIT can be increased in preservice teachers. 

Implications 

Through action research I was able to gather data through mixed methods. This 

study has informed my teaching of programming by using the action research to deeply 

analyze the instructional methods and the design of the curriculum. I was able to review 

what aspects of the instruction worked with respect to improving the participants’ 
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comprehension of programming concepts and motivation related to programming. The 

findings of this study are significant for future design and teaching practices to improve 

preservice teachers’ comprehension of programming concepts and motivation toward 

programming. First, the findings of this study suggest that preservice teachers’ 

comprehension of programming concepts and motivation related to programming can be 

improved through educational robotics. Second, this study has informed my classroom 

instruction, including updates to the current curriculum. Third, the findings of this study 

can be used to offer suggestions for other preservice teacher educators integrating 

programming concepts into their instruction. The next three sections will describe (1) 

personal implications, (2) design implications, and (3) recommendations for preservice 

teacher educators. 

Personal Implications 

 Through the process of this study, I have learned many personal lessons that will 

help me both as a scholar and an educator in my future practice. While the gains I have 

made as a scholar and educator are numerous, I will focus on two in this space. These 

two personal implications include (1) lasting scholarly experiences and (2) unexpected 

findings. 

 Lasting scholarly experiences. My work on this dissertation has left me with 

lasting experiences and knowledge. This dissertation has improved my depth of skill and 

understanding of quantitative data analysis. Through the guidance of my dissertation 

chair and personal research, I now feel confident in my abilities to both analyze and 

interpret quantitative data. Before this dissertation, my comfort zone for interpreting 

quantitative data was in descriptive statistics. I now understand the differences between 
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parametric and nonparametric results, as well as how these types of quantitative data are 

analyzed, presented, and interpreted. This improved depth of understanding has personal 

implications for my future research. With this new understanding, I look forward to 

adding analytical depth to my future quantitative data analyses.  

This dissertation has taken me outside of my scholarly comfort zone with 

qualitative data analysis. As a teacher, I understood the concept of alignment relative to 

instruction. Lessons needed to be aligned to state standards and course objectives. 

Throughout the instrument creation process, I was often frustrated with the countless 

revisions to the wording of my instruments because each phrase in the instruments 

needed to be aligned to previous literature and fine-tuned to measure exactly what it was 

meant to with no overlap between related concepts. Similarly, through the qualitative 

coding process, I was often frustrated with how precise each code needed to be. I simply 

had not viewed the world through such a precise and scholarly lens before. I have come 

to appreciate making instruments and codes as accurate as possible. With my increased 

awareness of alignment, I now critically examine studies through a scholarly lens. This 

increased awareness has personal implications for my future research. I look forward to 

using what I have learned through this dissertation process to incorporate high levels of 

alignment within my future research. Through my dissertation chair, I feel my 

capabilities in qualitative analysis have improved. Previously, my qualitative data 

analysis focus was on “quantitizing the qualitative,” as Saldaña (2016, p. 25) described. 

My frame of reference for qualitative research was more defined by categories than by 

themes. I focused on what each participant said in regard to each question and focused on 

creating categories specific to each question instead of looking for commonalities outside 
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of that immediate prompt. I have gained valuable experience with a qualitative coding 

tool. The coding tool used in this study, Delve, was an efficient way to assign open codes 

and look at the bigger picture. Delve helped to organize the open codes while keeping 

them tethered to their excerpts from the field notes and interview transcripts. This aspect 

of Delve proved helpful for reviewing excerpts while I moved through the qualitative 

coding steps. Through the qualitative coding process outlined in this dissertation, I have a 

deeper view of qualitative analysis. Now, I have the ability to take a deeper view of 

qualitative data and a broader view of qualitative codes in order to elicit comprehensive 

themes. I can connect different ideas through themes which span multiple categories. 

This deeper view of qualitative data analysis has personal implications for my future 

research. I look forward to using what I have learned to take a deeper look at the big 

picture within my future research. 

 Unexpected finding. Novelty effect refers to artificially positive results that are 

linked to the newness of a treatment and the curiosity of the participants (Hanus & Fox, 

2015). The end of the novelty effect can be detected when a steep decline in engagement 

has occurred (Hamari et al., 2014). My personal observations of participants’ behavioral 

engagement indicated that several participants had outwardly lost interest in the 

programming instruction. By the final week of the study, five participants seemed 

disengaged in programming and robotics. This indicated that the novelty of the 

intervention had worn off. The motivation survey and individual interview data were 

surprising because they demonstrated that while outwardly participants were ready to 

move on to new topics in the class, they had almost unanimously grown to value 

programming as a competency and were eager to integrate programming into their 
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instruction. While I had expected a slight increase in motivation related to programming 

because of the educational robotics factor, the results were higher and deviated far less 

than I expected. My observations as the instructor indicated that the novelty effect had 

worn off, so I expected lower results, but the motivation data indicated that the 

instruction made a genuine and lasting impact on participants’ value and perception of 

programming. This unexpected finding reinforces the importance of using mixed 

methods to overcome the biases of one type of data alone (Creswell & Plano Clark, 2018; 

Mertens, 2009).  

Curriculum Design Implications 

This research evaluated what effects educational robotics have on preservice 

teachers’ comprehension of programming concepts as well as how and to what extent 

educational robotics influence preservice teachers' motivation related to programming. 

Results indicated that participants experienced increases in all programming concepts and 

motivation indicators evaluated. Select data, classified under the pattern codes of Difficult 

and Updates to Instruction, can be used to inform areas of emphasis and updates to the 

curriculum design (Mertler, 2017). Considering these data, areas of emphasis and updates 

include (1) duration and scope, (2) design of units, and (3) focus on wider curricular 

connections. 

Duration and scope. The data from this study can help inform updates to the 

scope of the curriculum. While the curriculum’s designed scope of instruction was 

largely effective, it was broad. Instruction could be updated to include more than the 10 

hours of instructional time used in this study. While results indicated that 10 hours of 

instructional time, activities, and challenges are enough to significantly increase 
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preservice teachers’ comprehension of programming concepts, more instructional time 

has the potential to increase students’ depth of comprehension of programming concepts 

even more. Other studies have employed a greater number of contact hours ranging from 

12 (Kim et al., 2018; Sullivan & Moriarty, 2009) to 52 hours (Kucuk & Sisman, 2018). 

While 12 contact hours are possible in the context of the class in which this curriculum 

was taught, 52 hours are not. Therefore, 12 contact hours will be implemented in the 

updated curriculum. Data from the interview transcripts noted that participants wanted 

either more time to be dedicated to the more difficult concepts in the curriculum, or a 

longer overall instructional experience. For example, Simon summarized, “I would make 

it longer…maybe six weeks” as opposed to the four weeks of instructional time in the 

intervention, “that way, you can go slow.” Katy noted, “maybe emphasize more like on 

the last part of the programming, like maybe have like an extra lesson or two about the 

looping.” These suggestions could be incorporated in a few different ways. For example, 

when covering control structures, multiple class periods can provide more depth to the 

instruction on loops and switches. Participants’ scores and interview responses noted that 

they had difficulty with control structures while previous research has indicated that 

students are likely to make errors in control structures when writing programs 

(Ahmadzadeh et al., 2007; Chiu & Huang, 2015; Fitzgerald et al., 2008; Kim et al., 

2018). This update will allow for more time for practical experiences.  

In addition, the concept of variables gave students difficulty. The concept of 

variables is noted in the literature to be difficult to comprehend by novices (Grover & 

Basu, 2017; Meerbaum-Salant et al., 2013). Variables are not concepts directly covered 

in South Carolina’s K-8 computer science standards. The concept of variables was 
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included to present a natural integration link for those who are preparing to teach middle 

school math and to provide participants with more depth of knowledge of programming. 

However, the historic student makeup in the course in which this instruction occurs is 

heavily skewed to elementary level preservice teachers. Therefore, this unit of instruction 

can be removed to limit the scope to more pertinent and applicable topics for all students. 

An update to the curriculum can reign in the scope to focus on basic and advanced 

procedures, as well as the control structures of switches and loops. The instructional time 

dedicated to the Variable unit can be used to provide further depth and meaningful 

learning experiences for the other units. These topics will provide students with a 

comprehensive programming background while not overwhelming them with the large 

scope of programming concepts outside of what they would likely be required to 

implement. 

Design of units. The findings of this study can help inform updates to the design 

of educational robotics curricula. The design of this study included the units of Basic 

Procedures, Advanced Procedures, Control Structures, and Variables. It can be inferred 

that the design of these units largely contributed toward participants experiencing 

increased comprehension of programming concepts, as well as increased motivation 

related to programming, as demonstrated in the quantitative data, and verified by the 

qualitative data. However, these data also offered areas for improvement in the design of 

the curricula in the areas of comprehension and motivation. Areas of emphasis, as well as 

updates for the design of educational robotics curricula based on this study’s quantitative 

and qualitative data, will be presented by the instructional unit below. 
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Basic procedures. Participants’ scores on the Basic Procedures unit of the 

Programming Comprehension Assessment indicated substantial increases in the 

comprehension of basic syntactic and semantic programming concepts taught as part of 

the Basic Procedures unit. Participants’ interview responses indicated that the concepts in 

the Basic Procedures unit were valuable and helped them understand more difficult 

programming concepts later in the curriculum. Therefore, an emphasis on meaningful 

lectures that explain the programming language and basic programming concepts is 

important for subsequent iterations of this instruction. Based on the findings of this study, 

the activities and challenges outlined in Appendix A were indicated to help participants 

learn basic programming concepts while being motivational. Therefore, these activities 

and challenges will remain unchanged. As found in this study, participants struggled with 

debugging in the Basic Procedures unit. These findings of preservice teachers’ struggles 

with debugging are found in the literature as well (Kim et al., 2018). Therefore, 

debugging exercises should be prioritized within the instruction relative to syntactic and 

semantic concepts. The curriculum primarily taught debugging through examples in 

lectures. However, it did not include a practical application of debugging wherein 

participants needed to debug a program to perform a specific task. Based on participants’ 

data, more practical debugging experiences will be incorporated into future educational 

robotics curricula. Carefully designed debugging activities and challenges to improve 

students’ comprehension of this topic will be added. Updates to the curriculum will 

include an added emphasis on the foundational programming concepts as well as 

additional practical applications of debugging. 
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Advanced procedures. Participants had the highest increases as well as average 

posttest scores on the Advanced Procedures unit. Therefore, the curriculum design 

presented in Appendix A is well designed and necessitate few updates. In particular, the 

activities and challenges employed in this unit were characterized by participants in the 

interviews to be helpful for exercising their problem-solving skills as well as substantially 

motivational. While programming includes inherent math concepts (Barr & Stephenson, 

2011; Garcia, Havey, & Barnes, 2015) that were taught as a part of this unit’s design, 

participants struggled when applying math theorems within the problem-solving process 

in the Programming Comprehension Assessment. Therefore, the updated curriculum will 

include more direct practice related to math in programming problem-solving. This 

update will provide an increased depth of understanding to the unit already noted by 

participants to be both informative and motivational. 

Control structures. Participants exhibited moderate increases within the Control 

Structures unit. Qualitative data revealed that participants enjoyed using the color sensor 

in combination with switches to write programs that announced the color that the color 

sensor was looking at. Therefore, future iterations of this instruction will emphasize the 

use of the color sensor in combination with switches. Participants excelled at modifying a 

loop within an algorithm to execute a more efficient program, but they struggled with 

tracing a program that utilized multiple loops. Similar results have been found by other 

researchers (Ahmadzadeh et al., 2007; Chiu & Huang, 2015; Fitzgerald et al., 2008; Kim 

et al., 2018), noting an area for emphasis. While an increased emphasis on control 

structures concepts and increased instructional time could improve this curriculum as 

outlined in the section addressing the scope above, there are two more additions that can 
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be made for future teaching of this curriculum. First, an application activity will be added 

to this unit in which students follow the flow of a program that utilizes multiple loops. 

Second, the concept of looping can be taught mathematically first, and then demonstrated 

through educational robotics. Through this progression, constructivist teaching (Harel & 

Papert, 1991; Piaget, 1967) with educational robotics tools can be used to help students to 

take abstract math ideas and make them concrete through educational experiences. These 

two strategies will be added to the curriculum detailed in Appendix A for future 

instruction when teaching control structure concepts. 

Variables. Participants exhibited moderate increases within the Variables unit. 

However, qualitative data indicated that participants felt the concepts in the unit were 

difficult to understand. Quantitative data showed that while participants were comfortable 

with basic identification and application of variables, they did not exhibit a deep 

comprehension of using variables in combination with the other programming concepts 

covered in the curriculum. Similar findings of novices struggling with variables are noted 

in the literature (Grover & Basu, 2017; Meerbaum-Salant et al., 2013; Wang et al., 2009). 

Therefore, in addition to the option of cutting the Variables unit in the section addressing 

the scope of the curriculum above, an alternative path could include more learning 

activities focused on applying variables in complex problem-solving scenarios that 

overlap with concepts learned in previous units. 

Focus on wider curricular connections.  Interview data revealed an imbalance 

of integration ideas between math and all other subjects. Preservice teachers will likely be 

expected to integrate programming into each of the core subject areas (Google Inc. & 

Gallup Inc., 2016). However, interviewees presented as many integration ideas for the 
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subjects of English, social studies, and science combined (4) as they did math (4). The 

interviewees who were planning to teach English and social studies were unsure, 

describing how they would integrate programming into their future instruction. “So yeah, 

honestly in history I'm not sure like I said if I was teaching math, it would make perfect 

sense. In history, I don't know to be honest,” replied Jennifer. Randy explained, “I have 

to educate myself more about some cool ideas that you can put in history and also in 

English, too. I just have to dig into it more and figure out what would be the best for my 

students.” Mariah explained that she would use programming for digital storytelling 

without using educational robotics. She stated that she envisioned herself “incorporating 

it into a classroom with like story ideas or even the online like storyboard kind of things,” 

in reference to a video that participants watched on digital storytelling. Because 

participants’ integration ideas were largely skewed toward math integration, 

improvements can be made to the curriculum. The curriculum can be updated to 

showcase more integration videos and ideas for English, social studies, and science. For 

example, a study by Burke (2012) used programming as a new literacy with which 

middle school students could tell stories. Specific lesson plans for these subjects can also 

be presented. These updates can foster preservice teachers’ integration ideas for their 

future classrooms. 

Implications for Preservice Teacher Educators 

 The general implication of this study is that educational robotics can be used to 

positively impact preservice teachers’ comprehension and motivation related to 

programming. Therefore, it is not only recommended that preservice teacher educators 

teaching programming use educational robotics to teach programming, but that they use 
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the curriculum outlined in Appendix A in addition to the updates outlined in the 

Curriculum Design Implications section. 

If preservice teachers elect to build their own educational robotics curriculum for 

teaching programming, select findings in this study can be used to inform their 

instruction and curriculum design while teaching programming concepts in the 

classroom. Suggestions for preservice teacher educators aiming to increase their students’ 

comprehension of programming concepts and motivation related to programming will be 

presented in the sections below: (1) carefully sequence concepts, (2) use authentic 

problem-solving activities and challenges, and (3) offer collaborative problem-solving 

opportunities.  

Carefully sequence concepts. The findings of this study can help inform 

subsequent preservice teacher educators’ educational robotics curricula in terms of the 

sequence. This study’s purposeful sequencing was largely effective. There were some 

aspects of the unit sequencing in this study that preservice teacher educators could follow 

in their original curricula. When designing programming curricula, preservice teacher 

educators should gradually increase the difficulty of programming concepts within their 

units but do the reverse when teaching each programming concept within the unit. To 

explain, curricula should begin with the basic concepts that participants in this study 

pointed to as being greatly valuable. The programming concepts at the start of curricula 

should focus on foundational syntactic and semantic concepts that can be utilized and 

built upon in later units (Bucks, 2010; Mayer, 1979; Soloway & Ehrlich, 1984). 

Preservice teachers should then be afforded time in curricula to apply these programming 

concepts through activities and challenges which test their problem-solving skills. 
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Strategic programming concepts should next be introduced to students (McGill & Volet, 

1997). Participants in this study noted that the different strategic programming concepts 

in the Advanced Procedures unit also helped their understanding in later units. From this 

point, curricula can gradually present more difficult programming concepts that provide 

more depth for students’ comprehension. The sequencing of these more difficult 

programming concepts would depend on the topics being taught, as well as the state 

standards and instructional goals of the course.  

Use authentic problem-solving activities and challenges. Authentic problems 

have been proposed as a method with which to increase students’ motivation (Parsons & 

Ward, 2011; Willems & Gonzalez-DeHass, 2012). The problem-solving skills students 

develop when solving authentic problems are aligned with the skills they will need in the 

professional world (Belland, 2013; Jonassen, 2011). Interview data from this study 

revealed that participants were motivated by the authentic problems posed to them in the 

activities and challenges. Preservice teacher educators designing their programming 

curricula can utilize educational robotics and authentic problems in much the same way 

as this study. Unique mazes can be used to scale the difficulty of the problems that 

students are given at each stage of the instruction, either up or down. By using authentic 

problems, like mazes, preservice teacher educators can increase the motivation of their 

students. 

Offer collaborative problem-solving opportunities. This study used the 

learning support of partners. In the study, participants worked in pairs through different 

programming activities and challenges in order to provide immediate scaffolds for 

learning and frustration control. Participants’ interview responses indicated that they 
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often relied on their partner to help them through the programming process. Other 

researchers (Eguchi, 2007; Jaipal-Jamani & Angeli, 2017) noted similar positive results 

from paired groupings. Preservice teacher educators teaching programming through 

educational robotics can implement this same strategy. It is not, however, suggested to 

increase the groupings from pairs to any larger number. For example, research by Kucuk 

and Sisman (2018) and Sisman and Kucuk (2019) reported that preservice teachers 

working in groups of three or four experienced issues with communication and roles.  

While the partner dynamic was indicated to aid participants in their 

comprehension, it did make ensuring equal programming time with the robot difficult. 

Preservice teacher educators dividing their students into groupings beyond pairs may 

further water down the hands-on programming experience time for students, negatively 

affecting comprehension. 

Participants’ immediate partner was the support that interview data indicated they 

most often turned to; however, this was not the only learning support that participants 

explained helped them. A collaborative classroom environment also was stated to have 

aided participants as they worked. This learning environment occurred naturally and was 

not by design within the curriculum. Collaborative classroom environments where 

separate groups collaborated have been noted to help students learn to program (Casler-

Failing, 2017; Eguchi, 2013). If a participant had a question, and their partner could not 

help them, other groups in the classroom were noted to help the learner through the 

programming concept. Preservice teacher educators could build upon the phenomenon by 

encouraging group to group collaboration through social constructivist theory (Vygotsky, 

1980), which emphasizes the collaborations between students. For example, preservice 
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teacher educators may create special challenges for each instructional unit where multiple 

groups must work together to program their robots to interact to achieve a specific task. 

Then, groups working in collaboration could share ideas and help each other, further 

promoting group to group collaboration. 

Implications for Future Research 

 The findings of this study offer implications for future research. This study can be 

used as the beginning of a progression of studies for researchers to evaluate the impact of 

educational robotics as a tool for teaching programming. These potential research topics 

can be divided into four categories (1) updated curriculum, (2) factor analysis, (3) 

programming unplugged, and (4) experimental studies. 

Updated curriculum. In alignment with action research (Creswell, 2014; 

Mertler, 2017), this study’s curriculum could be improved and tested. In the sections 

above, proposed updates to the curriculum in this study, as well as recommendations for 

preservice teacher educators, were detailed. In a follow-up to this study, future research 

could enact these updates and recommendations to evaluate the updated curriculum’s 

impact on preservice teachers’ comprehension and motivation related to programming. 

For example, cycle two of this action research could focus more on basic and advanced 

procedures in addition to control structures over 12 contact hours and analyze the result. 

From those results, further follow-up studies could be crafted in a cyclical process. 

Factor analysis. The Programming Motivation Survey instrument utilized in this 

study indicated the potential for further refinement and validation. The Programming 

Motivation Survey was tested twice for reliability (N = 18), once on the pre-survey, and 

once on the post-survey. Very good reliability (DeVellis, 2003) was indicated on the 
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Cronbach’s alpha for both this instrument’s pre-survey (α = .96) and post-survey (α = 

.94). In addition, each of the instrument’ subscales indicated very good reliability on both 

their pre-survey and post-survey Cronbach’s alpha testing. The SMQ-II (Glynn et al., 

2011), which I adapted and customized to create the Programming Motivation survey, 

was studied, revised, and validated with a factor analysis (Marsh, Balla, & McDonald, 

1988) over the course of two studies (Glynn et al., 2009, 2011). Future research could 

validate the Programming Motivation Survey in much the same way by utilizing 

hundreds of participants through a multi-location sample of preservice teachers. This 

future research would gauge the construct validity of the Programming Motivation 

Survey, adjust its statements, and present a valid and reliable instrument for evaluating 

preservice teachers’ motivation related to programming. 

Schema and long-term memory. An investigation into the lasting effects of this 

study’s intervention is another intriguing research topic. The findings of this study 

indicated that educational robotics could be used to increase preservice teachers’ 

comprehension of programming concepts. Researchers (Atkinson & Shiffrin, 1968; 

Baddeley, 1992; Kalyuga, 2010) have explained theories of how learners store 

knowledge through schema and long-term memory. Further research could check to what 

extent the knowledge and skills developed by participants in this study return when called 

upon in long-term memory after an extended period. In this way, the interaction of the 

senses while learning to program (i.e., tangible educational robotics) could be evaluated 

through the lens of information processing models, such as the IPM (Newell & Simon, 

1972) and Multi Store Model of Memory (Atkinson & Shiffrin, 1968). Such research 

could provide deeper insights into the processes through which programming is learned. 
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Programming unplugged. The results of this study may have important 

implications for unplugged programming activities. Unplugged activities, described by 

Bower et al. (2017), are programming activities that use “paper or other tactile 

modelling” such as blocks “to demonstrate the area of computational thinking” (p. 57).  

Some institutions may not have the resources necessary to teach programming through 

educational robotics. Unplugged activities are a low-cost way to teach programming. 

Furthermore, unplugged activities have been shown to increase the understanding of 

programming concepts among elementary students (Curzon et al., 2009; Lambert & 

Guiffre, 2009) middle school students (Meerbaum-Salant et al., 2013), high school 

students (Weintrop, 2016), and in-service teachers (Bower et al., 2017). Therefore, 

merging the insights about comprehension and motivation uncovered in this study – like 

the use of authentic problems and factors that increased career motivation – with 

unplugged activities represents a new area of investigation with a wide range of 

implications for education given the lack of required equipment. 

Experimental studies. This study sets the stage for experimental research. Future 

research could evaluate educational robotics as a tool for teaching programming against 

non-tangible alternatives. Two future research ideas are outlined below.  

Visual programming environments versus educational robotics. Future research 

could add to the literature available on the differences between learning programming 

through tangible and non-tangible modalities. For example, Weintrop (2016) and 

Weintrop and Wilensky (2017) examined the modality through which students learn 

programming between text-based, block-based, and hybrid text and block-based 

programming environments. Future research could continue this line of inquiry and 
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examine the differences between students’ learning experiences in visual programming 

environments, like Scratch, and students’ learning experiences programming educational 

robotics. This research could investigate differences between control (visual 

programming environment) and experimental (educational robotics) groups’ 

comprehension of programming concepts and motivation related to programming. This 

potential future research presents a logical next step in evaluating modalities of learning 

programming. 

Educational robotics versus educational robotics simulators. Educational 

robotics simulators such as CoderZ, Robot Virtual Worlds, or Virtual Robotics Toolkit 

offer lower-cost alternatives to schools for teaching programming through robotics 

(Major et al., 2014; McNally et al., 2006). Future research could add to the inquiry into 

the differences between different modalities of programming started by Weintrop (2016) 

and Weintrop and Wilensky (2017). Future research could investigate the differences 

between students’ learning experiences in educational robotics simulators versus using 

educational robotics in the real world. This research could investigate differences 

between control (educational robotics simulator) and experimental (educational robotics) 

groups’ comprehension of programming concepts and motivation related to 

programming. This potential future research also presents a logical next step in 

evaluating modalities of learning programming. 

Limitations 

While this study suggests insights into the impact of educational robotics on 

preservice teachers’ comprehension of programming concepts and motivation related to 

programming, there are several limitations of this study. These limitations present areas 
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for further research. The following limitations will be outlined as they align to (1) 

methodology, (2) context, (3) participants, and (4) the researcher.  

Methodology 

One limitation of this study is its action research roots. Action research is a 

systematic process of inquiry that uses a cycle of planning, action, and reflection 

(Mertler, 2017). Because action research employs a highly contextualized problem, the 

solutions to that problem are highly contextualized, too. Therefore, the specificity of 

action research’s results to a particular “wicked problem” (Kochhar-Bryant, 2017, p. 12) 

are limiting. Further, as Mertler (2017) explained, “action research is not conclusive; the 

results of action research are neither right nor wrong but rather tentative solutions that are 

based on observations and data collection” (p. 18). These inherent characteristics of 

action research limit this study’s implications. 

In addition, the lack of control and experimental groups in the design of this study 

does limit its generalizability. While action research and experimental design are not 

mutually exclusive (Mertler, 2017), the equitable nature of action research paired with the 

ethical notion that all participants must receive the same benefits (Creswell, 2014) does 

limit the research design in this context. This study did not test any predetermined 

hypotheses, nor did I exert the detailed control necessary to definitively generalize results 

based on the different variables. Further inquiry into this topic should utilize true 

experimental design to definitively analyze the relationship between the variables. 

The muffled responses of one of the interviewees is also a limitation of this study. 

In two different sections of the interview, Simon provided muffled responses that could 

not be interpreted by the Microsoft Dictate live transcribing tool or by me when 
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reviewing the backup audio recording. While Simon’s response in one section was 

clarified by me in clear audio, the original wording of the interviewee was lost. The 

words and meanings of the interviewee in the second instance could not be interpreted 

and were not clarified in the recording. 

Context 

Equity of hands-on time with the technology in this study’s intervention provides 

an additional limitation. In the intervention, participants worked in pairs. While this study 

utilized a constructivist framework that valued learners working collaboratively, the 

sharing of the laptops and the robots between partners could not be totally ensured. While 

participants were encouraged to share the programming responsibilities and were 

prompted with multiple reminders to switch program writing duties from one partner to 

another during the class periods, the onus was on the participants to manage this. 

Therefore, participants who had less self-efficacy or self-determination could relinquish 

responsibility to their partner and lose valuable programming experience through difficult 

problems. Future studies should employ constraints that ensure each partner is given 

equal programming time or utilize an individual participant design. 

The novelty effect is a limitation for a short-term intervention, such as the one in 

this study (Hamari et al., 2014; Hanus & Fox, 2015; Tsay, Kofinas, Trivedi, & Yang, 

2018). The novelty effect is especially relevant when new technologies are introduced to 

participants due to participants’ propensity to engage more deeply with and view the 

technologies more favorably when they are new to them (Hamari et al., 2014; Hanus & 

Fox, 2015; Tsay et al., 2018). Future studies should implement longer-term interventions 
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in order to analyze the novelty effect of educational robotics on preservice teachers with 

longitudinal data. 

Limitations exist to the survey used in this study. This study followed a literature 

review and Glynn et al.’s (2011) valid and reliable SMQ-II survey. However, there were 

not enough participants in the class with which to complete a rigorous factor analysis to 

testify the Programming Motivation Survey’s empirical validity.  

Mixed methods involve qualitative interpretations (Creswell, 2014; Mertler, 

2017). The act of interpretation by the researcher is an inherently subjective process 

(Aron, 1992). My interpretations of the data are the result of viewing the data through a 

personal lens. This lens is intrinsically linked to my background, experiences, knowledge, 

and beliefs. Therefore, it is possible that different researchers with different lived 

experiences may come to different conclusions based on their personal lenses when 

analyzing the data. While checks on my subjectivities – like member checking, 

triangulation, and peer debriefing – did occur throughout the course of this study, such 

limitations do still apply. 

Participants 

Another limitation of this study’s highly specific context is the population. 

Mertler (2017) explained that action research is done by educators to better understand 

their own teaching practice, focusing “specifically on the unique characteristics of the 

population with whom a practice is employed” (p. 4). Due to the action research nature of 

this study, the sample was limited in size by the course cap of the class section taught by 

me. This population is small in sample size and largely homogenous. Of the final 

participants, 15 of the 18 were female, and half were elementary education majors. It is 
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possible that if this intervention were implemented in a different class with a different 

makeup of education majors or a different number of participants that the data would be 

different. Therefore, the results of this study cannot accurately be generalized to the 

larger population. Further research into the impact of educational robotics on preservice 

teachers should include a much larger sample size with a more diverse population of 

education majors. Multiple research sites and random sampling may be used in order to 

improve both the sample size and diversity of the participants.  

Researcher 

The design of the instruction in this study was developed by me. Although this 

instruction was evaluated by experts, there is still room for improvement. Through this 

action research, I aim to make data-driven decisions to augment the current instruction 

for the future. 

A final limitation involves the reflexivity of the researcher. As I acted as both the 

researcher and the instructor in this study, this may have unintentionally influenced its 

results. Participants were instructed to answer the survey and interview questions 

honestly and not solely in a way they thought their instructor would want. However, there 

is no way to know the inner psyche and motivations of participants during those data 

collection periods. Furthermore, as I acted as both the instructor and researcher, I may 

have missed important interactions and phenomena that occurred in the classroom while I 

was teaching or helping other participants. Such limitations can be removed from future 

studies by employing independent instructors and researchers.  



www.manaraa.com

 

219 

REFERENCES

Abelson, H., & DiSessa. A. (1986). Turtle geometry. Cambridge, MA: The MIT Press. 

Adams, A. E., Miller, B. G., Saul, M., & Pegg, J. (2014). Supporting elementary pre-

service teachers to teach STEM through place-based teaching and learning 

experiences. Electronic Journal of Science Education, 18(5), 1-22. 

Adams, D. B. (2010). Explore-create-present: A project series for CS. Proceedings of the 

ASEE North Central Sectional Conference (ASEE’10). 

Ahmadzadeh, M., Elliman, D., & Higgins, C. (2007). The impact of improving 

debugging skill on programming ability. Innovation in Teaching and Learning in 

Information and Computer Sciences, 6(4), 72–87. https ://doi.org/10.11120 

/ital.2007.06040 072. 

Ajzen, I. (2005). Attitudes, personality, and behavior. New York: Open University Press. 

Ala-Mutka, K. (2004). Problems in learning and teaching programming. Codewitz Needs 

Analysis, 1–13. Retrieved from http://www.cs.tut.fi/~edge/literature_study.pdf 

Alimisis, D. (2013). Educational robotics: Open questions and new challenges. Themes in 

Science & Technology Education, 6(1), 63–71. 

https://doi.org/10.1109/FIE.2014.7044055 

Alimisis, D., Moro, M., Arlegui, J., Pina, A., Stassini, F., & Papanikolaou, K. (2007). 

Robotics & constructivism in education: The TERECoP project. EuroLogo, 1–11. 

Retrieved from http://users.sch.gr/adamopou/docs/syn_eurologo2007_alimisis.pdf 



www.manaraa.com

 

220 

Alkaria, A., & Alhassan, R. (2017). The effect of in-service training of computer science 

teachers on Scratch programming language skills using an electronic learning 

platform on programming skills and the attitudes towards teaching programming. 

Journal of Education and Training Studies, 5(11). 

https://doi.org/10.11114/jets.v5i11.2608 

Almalki, S. (2016). Integrating quantitative and qualitative data in mixed methods 

research—challenges and benefits. Journal of Education and Learning, 5(3), 288. 

https://doi.org/10.5539/jel.v5n3p288 

Altin, H., & Pedaste, M. (2013). Learning approaches to applying robotics in science 

education. Journal of Baltic Science Education, 12(3), 365-377. 

Amabile, T. M., Hill, K. G., Hennessey, B. A., & Tighe, E. M. (1994). The work 

preference inventory: Assessing intrinsic and extrinsic motivational orientations. 

Journal of Personality and Social Psychology, 66(5). 

Anderson, L. W., Krathwohl, D. R., & Bloom, B. S. (2001). A taxonomy for learning, 

teaching, and assessing: A revision of Bloom’s Taxonomy of Educational 

Objectives. New York: Longman. 

Anderson, E. F., & McLoughlin, L. (2007). Critters in the classroom: A 3D computer-

game-like tool for teaching programming to computer animation students. 

International Conference on Computer Graphics and Interactive Techniques: 

ACM SIGGRAPH 2007 Educators Program, 7. 

Antle, A. 2007. Designing tangibles for children: What designers need to know. in CHI 

EA '07 extended abstracts on human factors in computing systems. San Jose, CA, 

USA: ACM. 



www.manaraa.com

 

221 

Apiola, M., Lattu, M., & Pasanen, T. A. (2010). Creativity and intrinsic motivation in 

computer science education. In C. Laxer (Ed.), Proceedings of the fifteenth 

annual conference on Innovation and technology in computer science education 

(pp. 199–203). https://doi.org/10.1145/1822090.1822147 

Appleton, K. (2003). How do beginning primary school teachers cope with science? 

Toward an understanding of science teaching practice. Research Science 

Education, 33(1), 1–25. 

Arlegui, J., Pina, A., & Moro, M. (2013). A PBL approach using virtual and real robots 

(with BYOB and LEGO NXT) to teaching learning key competences and 

standard curricula in primary level. Proceedings of the First International 

Conference on Technological Ecosystem for Enhancing Multiculturality - TEEM 

’13, 323–328. http://doi.org/10.1145/2536536.2536585 

Aron, L. (1992). Interpretation as expression of the analyst’s subjectivity. Psychoanalytic 

Dialogues, 2(4), 475-507. https://doi.org/10.1080/10481889209538947 

Arwood, L. (2004). Teaching cell biology to nonscience majors through forensics, or how 

to design a killer course. Cell Biology Education, 3, 131–138. 

Atkinson, R. C. & Shiffrin, R. M. (1968). Human memory. A proposed system and its 

control processes. In K. Spence & J. Spence (Eds.), The psychology of learning 

and motivation (Vol 2). New York, NY: Academic Press. 

Babaei, M., & Abednia, A. (2016). Reflective teaching and self-efficacy beliefs: 

Exploring relationships in the context of teaching EFL in Iran. Australian Journal 

of Teacher Education, 41(9), 1–27. https://doi.org/10.14221/ajte.2016v41n9.1 

Baddeley, A. (1992). Working memory. Science, 255, 556–559. 



www.manaraa.com

 

222 

Bakke, C. (2013). Perceptions of professional and educational skills learning 

opportunities made available through k-12 robotics programming (Doctoral 

dissertation). Retrieved from ProQuest Dissertation & Theses. (AAT 3556716) 

Ball, S. (1977). Motivation in education. Cambridge, MA: Academic Press. 

Bandura, A. (1997). Self-efficacy. Harvard Mental Health Letter, 13(9), 4–5. 

Barker, B. S., Nugent, G., & Grandgenett, N. (2014). Examining fidelity of program 

implementation in a STEM-oriented out-of-school setting. International Journal 

of Technology & Design Education, 24(1), 39-52. http://doi.org/10.1007/s10798-

013-9245-9. 

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is 

involved and what is the role of the computer science education community? 

ACM Inroads 2(1), 48-54. 

Bayman, P. & Mayer, R. E. (1983). A diagnosis of beginning programmers' 

misconceptions of BASIC programming statements. Communications of the ACM 

26(9), 677-679. 

Bazeley, P. (2013). Qualitative data analysis. Thousand Oaks: Sage 

Belland, B. R. (2013). Mindtools for argumentation, and their role in promoting ill-

structured problem solving. In J. M. Spector, B. B. Lockee, S. E. Smaldino, & M. 

Herring (Eds.), Learning, problem solving, and mind tools: Essays in honor of 

David H. Jonassen (pp. 229–246). New York, NY: Routledge. 

Belland, B. R., Kim, C. M., & Hannafin, M. J. (2013). A framework for designing 

scaffolds that improve motivation and cognition. Educational Psychologist, 48(4), 

243–270. https://doi.org/10.1080/00461520.2013.838920 



www.manaraa.com

 

223 

Bender, E., Schaper, N., Caspersen, M. E., Margaritis, M., & Hubwieser, P. (2016). 

Identifying and formulating teachers’ beliefs and motivational orientations for 

computer science teacher education. Studies in Higher Education, 41(11), 1958–

1973. https://doi.org/10.1080/03075079.2015.1004233 

Bers, M. U. (2008). Blocks to robots: Learning with technology in the early childhood 

classroom. New York, NY: Teachers College Press.  

Bers, M. U. (2010). The TangibleK robotics program: Applied computational thinking 

for young children. Early Childhood Research and Practice, 12(2). Retrieved 

from http://ecrp.uiuc.edu/v12n2/bers.html 

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational 

thinking and tinkering: Exploration of an early childhood robotics curriculum. 

Computers and Education, 72, 145–157. 

https://doi.org/10.1016/j.compedu.2013.10.020 

Bers, M. U., Ponte, I., Juelich, C., Viera, A., & Schenker, J. (2002). Teachers as 

designers: Integrating robotics in early childhood education. Information 

Technology in Childhood Education Annual, 14, 123-145. 

Bers, M. U., & Portsmore, M. (2005). Teaching partnerships: Early childhood and 

engineering students teaching math and science through robotics. Journal of 

Science Education and Technology, 14(1), 59–73. https://doi.org/10.1007/s10956-

005-2734-1 

Black, A. E., & Deci, E. L. (2000). The effects of instructors' autonomy support and 

students' autonomous motivation on learning organic chemistry: a self-

determination theory perspective. Science Education, 84(6), 740-756. 



www.manaraa.com

 

224 

Bland, J. M., & Altman, D. G. (1995). Multiple significance tests: The Bonferroni 

method. BMJ, 310(170). 

Bloom, B., Engelhart, M., Furst, E., Hill, W., & Krathwohl, D. (1956). Taxonomy of 

educational objectives: The classification of educational goals. New York: David 

McKay. 

Bloomberg, L. D., & Volpe, M. (2016). Completing your qualitative dissertation: A road 

map from beginning to end (3rd ed.). Thousand Oaks: Sage. 

Böhm, C., & Jacopini, G. (1966). Flow diagrams, turing machines and languages with 

only two formation rules. Communications of the ACM, 9(5), 366–371. 

https://doi.org/10.1145/355592.365646 

Bonar, J., & Soloway, E. (1983). Uncovering principles of novice programming. 

Proceedings of the 10th ACM SIGACT-SIGPLAN Symposium on Principles of 

Programming Languages, Austin, Texas. 

Bower, M., Wood, L. N., Lai, J. W., Howe, C., Lister, R., Mason, R., Highfield, K., & 

Veal, J. (2017). Improving the computational thinking pedagogical capabilities of 

school teachers. Australian Journal of Teacher Education, 42(3). 

http://dx.doi.org/10.14221/ajte.2017v42n3.4 

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative 

Research in Psychology, 3(2), 77-101. Retrieved from 

http://dx.doi.org/10.1191/1478088706qp063oa 

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the 

development of computational thinking. AERA, 727, 135–160. 

https://doi.org/10.1007/978-3-319-64051-8_9 



www.manaraa.com

 

225 

Brookhart, S. M., & Freeman, D. J. (1992). Characteristics of entering teacher candidates. 

Review of Educational Research, 62, 37–60. 

http://dx.doi.org/10.3102/00346543062001037 

Brosterman, N. (1997). Inventing kindergarten. New York, NY: Harry N. Adams Inc.  

Bruciati, A.P. (2004). Robotics technologies for K-8 educators: A semiotic approach for 

instructional design. Education Faculty Publications. Paper 56. 

http://digitalcommons.sacredheart.edu/ced_fac/56 

Bruder, S., & Wedeward, K. (2003). Robotics in the classroom. IEEE Robotics & 

Automation Magazine, 10(3), 25–29 

Bryan, L. A. (2003). Nestedness of beliefs: Examining a prospective elementary teacher’s 

belief system about science teaching and learning. Journal of Research in Science 

Teaching, 40(9), 835–868 

Bucks, G. W. (2010). A phenomenographic study of the ways of understanding 

conditional and repetition structures in computer programming languages. 

Retrieved from 

http://ezproxy.library.nyu.edu:2148/pqdtft/docview/858607918/abstract/138B68F

802A21839DB5/39?accountid=12768%5Cnhttp://ezproxy.library.nyu.edu:2283/

media/pq/classic/doc/2302029981/fmt/ai/rep/NPDF?hl=scratches,scratch,program

ing,programming&cit:auth=Bucks 

Burke, Q. (2012). The markings of a new pencil: Introducing programming-as-writing in 

the middle school classroom. Journal of Media Literacy Education, 4(2), 121–

135. 



www.manaraa.com

 

226 

Burke, Q. & Kafai, Y. B. (2014). Decade of game making for learning: From tools to 

communities. In M.C. Angelides & H. Agius (Eds.), Handbook of digital games 

689-709. New York: John Wiley & Sons. 

Burke, Q., Schep, M, & Dalton, T. (2016). CS for SC: A landmark report on K-12 

computer science in South Carolina. National Science Foundation. 1-19. 

Buss, R.R., & Zambo, D. (2014). A practical guide for students and faculty in CPED-

influenced programs working on an action research dissertation in practice. 

Retrieved from 

http://www.cpedinitiative.org/resource/resmgr/Literature/ARbuss_zambo_cped_p

roduct.pdf 

Casler-Failing, S. L. (2017). The effects of integrating Lego robotics into a mathematics 

curriculum to promote the development of proportional reasoning (Doctoral 

dissertation). Retrieved from ProQuest Dissertation & Theses. (AAT 10204060) 

Castledine, A. R., & Chalmers, C. (2011). LEGO robotics: An authentic problem solving 

tool? Design and Technology Education, 16, 19–27.  

Catlin, D. (2012). Maximising the effectiveness of educational robotics through the use 

of assessment for learning methodologies. Proceedings of 3rd International 

workshop teaching Robotics, Teaching with Robotics, Integrating Robotics in 

School Curriculum. Trento, Italy. 

http://www.terecop.eu/TRTWR2012/trtwr2012_submission_01.pdf  

Cejka, E., Rogers, C., & Portsmore, M. (2006). Kindergarten robotics: Using robotics to 

motivate math, science, and engineering literacy in elementary school. 

International Journal of Engineering Education, 22(4), 711–722. 



www.manaraa.com

 

227 

Ceruzzi, P. E. (1998). A history of modern computing. Cambridge, MA: MIT Press. 

Chambers, J. M., & Carbonaro, M. (2003). Designing, developing, and implementing a 

course on LEGO robotics for technology teacher education. Journal of 

Technology and Teacher Education, 11(2), 209–242. 

Chan, T. S., & Ahern, T. C. (1999). Targeting motivation – adapting flow theory to 

instructional design. Journal of Educational Computing Research 21(2), 152–163 

Chen, Z., & Yeung, A. S. (2015). Self-efficacy in teaching Chinese as a foreign language 

in Australian schools. Australian Journal of Teacher Education, 40(8). 

https://doi.org/10.14221/ajte.2015v40n8.2 

Cheng, P. L. (2017). Evaluating intention to use remote robotics experimentation in 

programming courses (Doctoral dissertation). Retrieved from ProQuest 

Dissertation & Theses. (AAT 10273171) 

Chiu, C.-F., & Huang, H.-Y. (2015). Guided debugging practices of game based 

programming for novice programmers. International Journal of Information and 

Education Technology, 5(5), 343–347. https ://doi.org/10.7763/IJIET 

.2015.V5.527. 

Cliburn, D. (2006). A CS0 course for the liberal arts. Proceedings of the 37th ACM 

Technical Symposium on Computer Science Education (SIGCSE’06). 77–81. 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Nature (2nd ed., 

Vol. 506). Lawrence Erlbaum Associates. https://doi.org/10.1038/506274a 

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159. 

http://doi.org/10.1037/0033-2909.112.1.155. 



www.manaraa.com

 

228 

Cooper, S., Dann, W., & Pausch, R. (2000). Alice: A 3-D tool for introductory 

programming concepts. Journal of Computer Sciences in Colleges 15(5), 107–

116. 

Corbin, J., & Strauss, A. (2008). Basics of qualitative research: Techniques and 

procedures for developing grounded theory (3rd ed.). Sage Publications, Inc. 

https://doi.org/10.4135/9781452230153 

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed method 

approaches (4th ed.). Thousand Oaks, CA: Sage. 

Creswell, J.W. (2017). Qualitative inquiry and research design: Choosing among the five 

traditions. Thousand Oaks, CA: Sage Publications. 

Creswell, J. W., & Plano Clark, V. L. (2018). Designing and conducting mixed methods 

research (3rd ed.). Thousand Oaks, CA: Sage. 

Creswell, J. W., & Poth, C. N. (2018). Qualitative inquiry and research design: Choosing 

among five approaches (4th ed.). Los Angeles: Sage. 

Csikszentmihalyi, M. (1975). Beyond boredom and anxiety. San Francisco, CA: Jossey-

Bass. 

Csikszentmihalyi, M. (1990). Flow: the psychology of optimal experience. New York, 

NY: Harper & Row.  

Csikszentmihalyi, M. (2000). Beyond boredom and anxiety: experiencing flow in work 

and play. San Francisco, CA: Jossey-Bass. 

Cullen, T. A., & Greene, B. A. (2011). Preservice teachers’ beliefs, attitudes, and 

motivation about technology integration. Journal of Educational Computing 

Research, 45(1), 29–47. https://doi.org/10.2190/EC.45.1.b 



www.manaraa.com

 

229 

Curzon, P., Cutts, Q. I., & Bell, T. (2009). Enthusing and inspiring with reusable 

kinaesthetic activities. Proceedings of the 14th Annual ACM SIGCSE Conference 

on Innovation and Technology in Computer Science Education, Paris, France, 3-

7 Jul 2009, (pp. 94-98). doi:10.1145/1595496.1562911 

Dagdilelis, V., Sartatzemi, M., & Kagani, K. (2005). Teaching (with) robots in secondary 

schools: Some new and not-so-new pedagogical problems. Proceedings - 5th 

IEEE International Conference on Advanced Learning Technologies, ICALT 

2005, 2005(January), 757–761. https://doi.org/10.1109/ICALT.2005.255 

Davis E. A., Petish, D., & Smithey, J. (2006). Challenges new science teachers face. 

Review of Educational Research 76(4), 607–651 

Deci, E. L. (1992). The relation of interest to motivation of behavior: A self-

determination theory perspective. In K.A. Renninger, S. Hidi & A. Krapp (Eds.), 

The role of interest in learning and development (pp. 3-25). HillSDale, NJ: 

Lawrence Erlbaum Associates. 

Deci, E. L., & Ryan R. M. (2000). The ‘what’ and ‘why’ of goal pursuits: Human needs 

and the self-determination of behavior. Psychological Inquiry, 11, 227–68. 

doi:10.1207/ S15327965PLI1104_01 

DeClue, T. H. (2003). Pair programming and pair trading: Effects on learning and 

motivation in a cs2 course. Journal of Computing Sciences in Colleges, 18(5), 49-

56. 

Denis, B., & Hubert, S. (2001). Collaborative learning in an educational robotics 

environment. Computers in Human Behavior, 17, 465–480. 



www.manaraa.com

 

230 

DeVellis, R. F. (2003). Scale development: Theory and applications. Thousand Oaks, 

CA: Sage. 

Devlin, A. S. (2017). The research experience: Planning, conducting, and reporting 

research. Thousand Oaks: Sage. 

Dewey, J. (1913). Interest and effort in education. In J.A. Boydston (Ed.), The middle 

works, 1899-1924: Vol.7 1912-1914 (pp. 153-197), Carbondale, IL: Southern 

Illinois University Press. 

Dijkstra, E. W. (1976). A discipline of programming. Englewood Cliffs, N.J.: Prentice 

Hall. 

Dodds, Z., Greenwald, L., Howard, A., Tejada, S., & Weinberg, J. (2006). Components, 

curriculum, and community: Robots and robotics in undergraduate AI education. 

AI Magazine, 27(1), 11–22. 

Donzeau-Gouge, V., Huet, G., Lang, B., & Kahn, G. (1984). Programming environments 

based on structured editors: The MENTOR experience. In D. Barstow, H. E. 

Shrobe, & E. Sandewall (Eds.), Interactive Programming Environments. McGraw 

Hill. 

Dörnyei, Z., & Ushioda, E. (2011). Teaching and researching motivation (2nd ed.). New 

York, NY: Longman. 

Driscoll, M. (2005). Psychology of learning for instruction (3rd ed.). Boston, MA: Allyn 

and Bacon. 

Dwyer, S.C., & Buckle, J.L. (2009). The space between: On being an insider-outsider in 

qualitative research. International Journal of Qualitative Methods, 8(1), 54-63. 



www.manaraa.com

 

231 

Eccles, J. S., Simpkins, S. D., & Davis-Kean, P. E. (2006). Math and science motivation: 

A longitudinal examination of the links between choices and beliefs. 

Developmental Psychology, 42, 70–83. 

Egbert, J. (2003). A study of flow theory in the foreign language classroom. Modern 

Language Journal 87(4), 499–518. 

Eguchi, A. (2007). Educational robotics for undergraduate freshmen. Proceedings of 

World Conference on Educational Multimedia, Hypermedia and 

Telecommunications 2007, 1792–1797. Retrieved from 

http://www.editlib.org/INDEX.CFM?fuseaction=Reader.ViewAbstract&amp;pap

er_id=25614 

Eguchi, A. (2012). Educational robotics theories and practice: Tips for how to do it right. 

In B. S. Barker, G. Nugent, N. Grandgenett & V. I. I. Adamchuk (Eds.), Robots in 

K-12 education: A new technology for learning (pp. 1–30). Hershey, PA: 

Information Science Reference. 

Eguchi, A. (2013). Educational robotics for promoting 21st century skills. Journal of 

Automation, Mobile Robotics & Intelligent Systems, 8(1), 1–42. 

https://doi.org/10.14313/JAMRIS 

Ertmer, P. A., & Ottenbreit-Leftwich, A. T. (2010). Teacher technology change: How 

knowledge, confidence, beliefs, and culture intersect. Journal of Research on 

Technology in Education, 42(3), 255-284. 

https://doi.org/10.1080/15391523.2010.10782551 

Ertmer, P. A., Ottenbreit-Leftwich, A. T., Sadik, O., Sendurur, E., & Sendurur, P. (2012). 

Teacher beliefs and technology integration practices: A critical relationship. 



www.manaraa.com

 

232 

Computers & Education, 59(2), 423-435. 

https://doi.org/10.1016/j.compedu.2012.02.001 

Erwin, B., Cyr, M., & Rogers, C. (2000). LEGO engineer and RoboLab: Teaching 

engineering with LabVIEW from kindergarten to graduate school. International 

Journal of Engineering Education, 16(3), 181-192. 

Falloon, G. (2016). An analysis of young students’ thinking when completing basic 

coding tasks using Scratch Jnr. on the iPad. Journal of Computer Assisted 

Learning, 32(6), 576–593. https://doi.org/10.1111/jcal.12155 

Feldgen, M. & Clua, O. (2004), Games as a motivation for freshman students learn 

programming, in ‘Frontiers in Education, 2004. FIE 2004. 34th Annual’, pp. 

S1H/11–S1H/16 Vol. 3. 

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5-6 years old 

kindergarten children in a computer programming environment: A case study. 

Computers and Education, 63, 87–97. 

https://doi.org/10.1016/j.compedu.2012.11.016 

Feurzeig, W., Papert, S., Bloom, M., Grant, R., & Soloman, C. (1969). Programming-

languages as a conceptual framework for teaching mathematics. Programming-

languages as a conceptual framework for teaching mathematics. Final report on 

the first fifteen months of the Logo Project (Technical Report 1889). Cambridge, 

MA: BBN. 

Field, A. P. (2009). Discovering statistics using SPSS. Los Angeles; London: SAGE. 

Fishbein, M., & Ajzen, I. (1972). Beliefs, attitudes, intentions and behavior: An 

introduction to theory and research. Reading, MA: Foster. 



www.manaraa.com

 

233 

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L., et 

al. (2008). Debugging: Finding, fixing and flailing, a multi-institutional study of 

novice debuggers. Computer Science Education, 18(2), 93–116. https 

://doi.org/10.1080/08993 40080 21145 08. 

Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential 

of the concept, state of the evidence. Review of Educational Research, 74(1), 59–

109. 

Frels R. K., & Onwuegbuzie, A. J. (2013). Administering quantitative instruments with 

qualitative interviews: A mixed research approach. Journal of Counseling & 

Development, 91(1), 184-194. 

Garcia, D., Harvey, B., & Barnes, T. (2015). The beauty and joy of computing. ACM 

Inroads, 6(4), 71–79. https://doi.org/10.1145/2835184 

Gibbons, J. D., & Chakraborti, S. (2011). Nonparametric statistical inference (5th ed.). 

Boca Raton, FL: Taylor & Francis Group, LLC. 

Glynn, S. M., Brickman, P., Armstrong, N., & Taasoobshirazi, G. (2011). Science 

motivation questionnaire II: Validation with science majors and nonscience 

majors. Journal of Research in Science Teaching, 48(10), 1159–1176. 

https://doi.org/10.1002/tea.20442 

Glynn, S. M., Taasoobshirazi, G., & Brickman, P. (2009). Science motivation 

questionnaire: Construct validation with nonscience majors. Journal of Research 

in Science Teaching, 46(2), 127–146. https://doi.org/10.1002/tea.20267 

Goh, H., & Ali, B. (2014). Robotics as a tool to stem learning. International Journal for 

Innovation Education and Research, 2(10), 66–78. 



www.manaraa.com

 

234 

Good, J. (2011). Learners at the wheel: Novice programming environments come of age. 

International Journal of People-Oriented Programming, 1(1), 1-24. 

http://dx.doi.org/ 10.4018/ijpop.2011010101. 

Google Inc., & Gallup Inc. (2016). Trends in the state of computer science in U.S. K-12 

schools. Retrieved from http://goo.gl/j291E0 

Govender, I., & Grayson, D. J. (2008). Pre-service and in-service teachers’ experiences 

of learning to program in an object-oriented language. Computers and Education, 

51(2), 874–885. https://doi.org/10.1016/j.compedu.2007.09.004 

Greenley, W., & Tidwell, C. (2002). Legos in the classroom?: Teaching computer 

programming to advanced high school students. In Hawaiian International 

Business Conference (pp. 1–16). 

Greenwood, D. J., & Levin, M. (2007). Introduction to action research (Vol. 2). 

Thousand Oaks, CA: Sage.  

Grover, S., & Basu, S. (2017). Measuring student learning in introductory block-based 

programming: Examining misconceptions of loops, variables, and Boolean logic. 

Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer 

Science Education - SIGCSE ’17, 267–272. 

https://doi.org/10.1016/j.pupt.2006.04.005 

Grover, S., & Pea, R. (2013). Computational thinking in k-12: A review of the state of the 

field. Educational Researcher, 42(1), 38–43. 

https://doi.org/10.3102/0013189X12463051 

Gunbatar, M. S., & Karalar, H. (2018). Gender differences in middle school students’ 

attitudes and self-efficacy perceptions towards mBlock programming. European 



www.manaraa.com

 

235 

Journal of Educational Research, 7(4), 925–933. https://doi.org/10.12973/eu-

jer.7.4.923 

Gunning, A. M., & Mensah, F. M. (2011). Preservice elementary teachers’ development 

of self-efficacy and confidence to teach science: A case study. Journal of Science 

Teacher Education, 22(2), 171-185. https://doi.org/10.1007/s10972-010-9198-8 

Guzdial, M., & Soloway, E. (2002). Teaching the Nintendo generation to program. 

Communications of the ACM, 45(4),17–21. 

Hadjiachilleos, S., Avraamidou, L., & Papastavrou, S. (2013). The use of Lego 

technologies in elementary teacher preparation. Journal of Science Education 

and Technology, 22(5), 614–629. 

Hamari, J., Koivisto, J., & Sarsa, H. (2014). Does gamification work? A literature review 

of empirical studies on gamification. Paper presented at the 2014 47th Hawaii 

International Conference on System Sciences. 

Han, I. (2013). Embodiment: A new perspective for evaluating physicality in learning. 

Journal of Educational Computing Research, 49(1), 41– 59. 

doi:10.2190/EC.49.1.b. 

Han, J., & Yin, H. (2016). Teacher motivation: Definition, research development and 

implications for teachers. Cogent Education, 3(1), 1–18. 

https://doi.org/10.1080/2331186X.2016.1217819 

Hanus, M. D., & Fox, J. (2015). Assessing the effects of gamification in the classroom: A 

longitudinal study on intrinsic motivation, social comparison, satisfaction, effort, 

and academic performance. Computers & Education, 80, 152-161. 

Harasim, L. (2012). Learning theory and online technologies. New York: Routledge. 



www.manaraa.com

 

236 

Harel, I., & Papert, S. (1991). Constructionism. Norwood NJ: Ablex Publishing. 

Hathcoat, J. D., & Meixner, C. (2017). Pragmatism, factor analysis, and the conditional 

incompatibility thesis in mixed methods research. Journal of Mixed Methods 

Research, 11(4), 433–449. https://doi.org/10.1177/1558689815622114 

Herr, K., & Anderson, G.L. (2005). The action research dissertation. Thousand Oaks, 

CA: Sage. 

Hopkins, C. D. & Antes, R. L. (1990) Classroom management and evaluation (3rd ed.). 

F.E. Itasca, IL: Pencock Publishing, Inc. 

Howe, J. A. M. (1981). Learning mathematics through Logo programming (Research 

Paper No 153). Department of Artificial Intelligence. Edinburgh: University of 

Edinburgh. 

Huang, K. H., Yang, T. M., & Cheng, C. C. (2013). Engineering to see and move: 

Teaching computer programming with flowcharts vs. LEGO robots. International 

Journal of Emerging Technologies in Learning, 8(4), 23–26. 

Huang, Y., Backman, S. J., & Backman, K. F. (2010). Student attitude toward virtual 

learning in second life: A flow theory approach. Journal of Teaching in Travel 

and Tourism, 10(4), 312–334. 

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015). Supporting all 

learners in school-wide computational thinking: A cross-case qualitative analysis. 

Computers and Education, 82, 263–279. 

https://doi.org/10.1016/j.compedu.2014.11.022 

Jaipal-Jamani, K., & Angeli, C. (2017). Effect of robotics on elementary preservice 

teachers’ self-efficacy, science learning, and computational thinking. Journal of 



www.manaraa.com

 

237 

Science Education and Technology, 26(2), 175–192. 

https://doi.org/10.1007/s10956-016-9663-z 

Jayathirtha, G., Fields, D. A., & Kafai, Y. B. (2018). Computational concepts, practices, 

and collaboration in high school students’ debugging electronic textile projects. In 

the conference proceedings of the International conference on computational 

thinking education (CTE’18), The Education University of Hong Kong, Hong 

Kong, China. https://par.nsf.gov/servlets/purl/10101544 

Jenkins, T. (2001). The motivation of students of programming. ACM SIGCSE Bulletin, 

33(3), 53-56. 

Jenkins, T. & Davy, J. (2002). Diversity and motivation in introductory programming. 

Innovation in Teaching and Learning in Information and Computer Sciences (1)1. 

1-9. 

Johns, G. (1996). Organizational behavior: Understanding and managing life at work 

(4th ed.). New York: HarperCollins. 

Johnson-Laird, P. N. (1983). Mental models: towards a cognitive science of language, 

inference, and consciousness. Cambridge, MA: Harvard University Press. 

Jonassen, D. H. (2000). Computers as mindtools for schools: Engaging critical thinking 

(2nd ed). Upper Saddle River, NJ: Prentice Hall. 

Jonassen, D. H. (2011). Learning to solve problems: A handbook for designing problem 

solving learning environments. New York, NY: Routledge. 

Kabatova, M., & Pekarova, J. (2010). Learning how to teach robotics. Constructionism 

2010 Conference, 1–8. https://doi.org/10.18848/1447-9494/cgp/v15i06/45812 



www.manaraa.com

 

238 

Kafai, Y. B., & Resnick, M. (1996). Constructionism in practice: Designing, learning and 

thinking in a digital world. Mahwah, NJ: Lawrence Erlbaum Associates. 

Kalyuga, S. (2010). Schema acquisition and sources of cognitive load. Cognitive Load 

Theory, 48–64. https://doi.org/10.1017/CBO9780511844744.005 

Karahoca, D., Karahoca, A., & Uzunboylu, H. (2011). Robotic teaching in primary 

school education by project based learning for supporting science and technology 

courses. Procedia Computer Science, 3, 1425–1431. 

Katz, I. R., & Anderson, J. R. (1987). Debugging: An analysis of bug-location strategies. 

Human–Computer Interaction, 3(4), 351. 

Kay, J. S., Moss, J. G., Engelman, S., & McKlin, T. (2014). Sneaking in through the back 

door: Introducing K-12 teachers to robot programming. Proceedings of the 45th 

ACM Technical Symposium on Computer Science Education, 499–504. 

https://doi.org/10.1145/2538862.2538972 

Kaya, E., Newley, A., Deniz, H., Yesilyurt, E., & Newley, P. (2015). Introducing 

engineering design to a science teaching methods course through educational 

robotics and exploring changes in views of preservice elementary teachers. 

Journal of College Science Teaching, 47(2), 66–75. 

Kazakoff, E., Sullivan, A., & Bers, M. (2013). The effect of a classroom-based intensive 

robotics and programming workshop on sequencing ability in early childhood. 

Early Childhood Education Journal, 41(4), 245–255. 

Kelleher, C., Pausch, R., & Kiesler, S. (2007). Storytelling Alice motivates middle school 

girls to learn computer programming. Proceedings of the SIGCHI Conference on 



www.manaraa.com

 

239 

Human Factors in Computing Systems, CHI ’07, ACM. New York, NY, USA, 

(pp. 1455–1464). 

Keller, J. M. (1983). Motivational design of instruction. In C. M. Reigeluth (Ed.), 

Instructional Design Theories and Models: An Overview of Their Current Status 

(pp. 386–434). HillSDale, NJ: Lawrence Erlbaum Associates. 

Keller, J. M. (1987). IMMS: Instructional materials motivation survey. Tallahassee, FL: 

Florida State University. 

Kim, C., Kim, D., Yuan, J., Hill, R. B., Doshi, P., & Thai, C. N. (2015). Robotics to 

promote elementary education pre-service teachers’ STEM engagement, learning, 

and teaching. Computers and Education, 91, 14–31. 

https://doi.org/10.1016/j.compedu.2015.08.005 

Kim, C., Yuan, J., Kim, D., Doshi, P., Thai, C. N., Hill, R. B., & Melias, E. (2017). 

Studying the usability of an intervention to promote teachers’ use of robotics in 

STEM education. Journal of Educational Computing Research, 56(8), 1179–

1212. https://doi.org/10.1177/0735633117738537 

Kim, C., Yuan, J., Vasconcelos, L., Shin, M., & Hill, R. B. (2018). Debugging during 

block-based programming. Instructional Science, 46(5), 767–787. 

https://doi.org/10.1007/s11251-018-9453-5 

Klatzky, R.L. (1980). Human memory: Structures and processes. San Francisco, CA: 

W.H. Freeman & Co. 

Kochhar-Bryant, C. A. (2017). Symbiotic space: exploring the nexus of rigor, problems 

of practice and implementation. Impacting Education: Journal on Transforming 

Professional Practice, 2(1), 6–14. https://doi.org/10.5195/IE.2017.25. 



www.manaraa.com

 

240 

Koller, A., & Kruijff, G.-J. M. (2004). Talking robots with LEGO MindStorms. 

Proceedings of the 20th International Conference on Computational Linguistics - 

COLING ’04. https://doi.org/10.3115/1220355.1220404 

Kolling, M. & Rosenberg, J. (2001). Guidelines for teaching object orientation with Java. 

SIGCSE Bullitin 33(3), 33–36. 

Kopcha, T. J., McGregor, J., Shin, S., Qian, Y., Choi, J., Hill, R., … Choi, I. (2017). 

Developing an integrative STEM curriculum for robotics education through 

educational design research. Journal of Formative Design in Learning, 1(1), 31–

44. https://doi.org/10.1007/s41686-017-0005-1 

Krapp, A., Hidi, S., & Renninger, K. A. (1992). Interest, learning, and development. In 

K. A. Renninger, S. Hidi, & A. Krapp (Eds.), The role of interest in learning and 

development (pp. 3- 25). HillSDale, NJ: Lawrence Erlbaum Associates, Inc. 

Kristensen, B. B., & Osterbye, K. (1994). Conceptual modeling and programming 

languages. ACM SIGPLAN Notices 29(9), 81-90. 

Kucuk, S., & Sisman, B. (2018). Pre-service teachers’ experiences in learning robotics 

design and programming. Informatics in Education, 17(2), 301–320. 

https://doi.org/10.15388/infedu.2018.16 

Kuittinen, M., & Sajaniemi, J. (2004). Teaching roles of variables in elementary 

programming courses. SIGCSE Bulletin 36(3) 57-61. 

Lambert, L., & Guiffre, H. (2009). Computer science outreach in an elementary school. 

Journal of Computing Sciences in Colleges, 24(3), 118–124. 



www.manaraa.com

 

241 

Landry, C. L. (2003). Self-efficacy, motivation, and outcome expectation correlates of 

college students’ intention certainty (Doctoral dissertation). Retrieved from 

ProQuest Dissertation & Theses. (AAT 3085864) 

Lanzonder, A. (2005). Do two heads search better than one? Effects of student 

collaboration on web search behaviour and search outcomes. British Journal of 

Educational Technology, 36(3), 465–475. 

Lauwers, T., Nourbakhsh, I., & Hamner, E. (2009). CSbots: Design and deployment of a 

robot designed for the CS1 classroom. Proceedings of the 40th Technical 

Symposium on Computer Science Education (SIGCSE’09). 428–432. 

Law, K., Lee, V., & Yu, Y. (2010). Learning motivation in e-learning facilitated 

computer programming courses. Computers and Education (55)1. 218-228. 

https://doi.org/10.1016/j.compedu.2010.01.007 

Lawson, A. E., Banks, D. L., & Logvin, M. (2007). Self-efficacy, reasoning ability, and 

achievement in college biology. Journal of Research in Science Teaching, 44, 

706–724. 

Levin, J. A., & Kereev, Y. (1980). Personal computers and education: The challenge to 

schools. Center for Human Information Processing. La Jolla, CA: University of 

California – San Diego. 

Levin, T., & Long, R. (1981). Effective instruction. Alexandria, VA: Association for 

Supervision and Curriculum Development. 

Lister, R., Seppälä, O., Simon, B., Thomas, L., Adams, E. S., Fitzgerald, S., … Sanders, 

K. (2004). A multi-national study of reading and tracing skills in novice 

programmers. Working group reports from ITiCSE on Innovation and technology 



www.manaraa.com

 

242 

in computer science education - ITiCSE-WGR ’04. 

https://doi.org/10.1145/1044550.1041673 

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Thousand Oaks, CA: Sage. 

Lindh, J., & Holgersson, T. (2007). Does Lego training stimulate pupils ability to solve 

logical problems? Computers & Education, 49(4), 1097-1111. 

Lord, F. M. (1952). The relationship of the reliability of multiple-choice test to the 

distribution of item difficulties. Psychometrika, 17, 181-194. 

Lu, J. J., & Fletcher, G. (2009). Thinking about computational thinking. Proceedings of 

the 40th ACM Technical Symposium on Computer Science Education 

(SIGCSE’09). 

Lye, S., & Koh, J. (2014). Review on teaching and learning of computational thinking 

through programming: What is next for K–12? Computers in Human Behaviour, 

41, 51–61. 

Majherova, J., & Kralik, V. (2017). Innovative methods in teaching programming for 

future informatics teachers. European Journal of Contemporary Education, 6(3), 

390–401. https://doi.org/10.13187/ejced.2017.3.390 

Major, L., Kyriacou, T., & Brereton, P. (2014). The effectiveness of simulated robots for 

supporting the learning of introductory programming: a multi-case case study. 

Computer Science Education, 24(2–3), 193–228. 

https://doi.org/10.1080/08993408.2014.963362 

Malan, D. J., & Leitner, H. H. (2007). Scratch for budding computer scientists. ACM 

SIGCSE Bulletin, 39(1), 223. https://doi.org/10.1145/1227504.1227388 



www.manaraa.com

 

243 

Manches, A., & Price, S. (2011). Designing learning representations around physical 

manipulation, 81–89. Proceedings of the 10th international conference on 

interaction design and children. https://doi.org/10.1145/1999030.1999040 

Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., & Settle, 

A. (2014). Computational thinking in K-9 education. Proceedings of the Working 

Group Reports of the 2014 on Innovation & Technology in Computer Science 

Education Conference - ITiCSE-WGR ’14, 1–29. 

https://doi.org/10.1145/2713609.2713610 

Martin, A. J. (2003). The Student Motivation Scale: Further testing of an instrument that 

measures school students’ motivation. Australian Journal of Education, 47, 88-

106. 

Martin, A. J. (2007). Examining a multidimensional model of student motivation and 

engagement using a construct validation approach. British Journal of Educational 

Psychology, 77(2), 413–440. https://doi.org/10.1348/000709906X118036 

Martin, A. (2012). Part II commentary: Motivation and engagement: Conceptual, 

operational, and empirical clarity. In S. L. Christenson, A. L. Reschly, & C. Wylie 

(Eds.), Handbook of Research on Student Engagement (pp. 303-311). New York, 

NY: Springer US. 

Martin, F. G., Mikhak, B., Resnick, M., Silverman, B. & Berg, R. (2000). To Mindstorms 

and beyond: Evolution of a construction kit for magical machines. In A. Druin & 

J. Hendler (Eds.), Robots for kids: Exploring new technologies for learning (pp. 

9–33). San Mateo, CA: Morgan Kaufmann. 



www.manaraa.com

 

244 

Martin, F. G, Scribner-MacLean, M., Christy, S., Rudnicki, I., Londhe, R., Manning, C., 

& Goodman, I. F. (2011). Reflections on iCODE: Using web technology and 

hands-on projects to engage urban youth in computer science and engineering. 

Autonomous Robots, 30(3), 265–280. https://doi.org/10.1007/s10514-011-9218-3 

Martin, F. G., & Resnick, M. (1993). LEGO/Logo and electronic bricks: creating a 

scienceland for children. In D. Ferguson (Ed.), Advanced educational 

technologies for mathematics and science (pp. 61–90). Berlin: Springer 

Marsh, H. W., Balla, J. R., & McDonald, R. P. (1988). Goodness-of-fit indices in 

confirmatory factor analysis: The effect of sample size. Psychological Bulletin, 

102, 391-410. 

Marzano, R. J. (2007). The art and science of teaching. Alexandria, VA: ASCD. 

Maslow, A. H. (1943). A theory of human motivation. Psychology Review 50, 370–396. 

Maxwell, J.A. (2010). Using numbers in qualitative research. Qualitative Inquiry, 16(6), 

475–482. http://doi.org/10.1177/1077800410364740 

Mayer, R. E. (1979). A psychology of learning BASIC. Communications of the ACM, 

22(11), 589-593. 

Mayer, R. E. (1981). The psychology of how novices learn computer programming. ACM 

Computing Surveys, 13(1): 121-141. 

McClelland, J. L. (2011). Memory as a constructive process: The parallel-distributed 

processing approach. In S. Nalbantian, P. Matthews, and J. L. McClelland (Eds.), 

The memory process: Neuroscientific and humanistic perspectives (pp. 129-151). 

Cambridge, MA: MIT Press. 



www.manaraa.com

 

245 

McGill, M. M. (2012). Learning to program with personal robots. ACM Transactions on 

Computing Education, 12(1), 1–32. https://doi.org/10.1145/2133797.2133801 

McGill, T. J., & Volet, S. E. (1997). A conceptual framework for analyzing students' 

knowledge. Journal of Research on Computing in Education 29(3), 276-298. 

McMillan, J. H. (2016). Fundamentals of educational research (7th ed.). Boston: 

Pearson. 

McNally, M., Goldweber, M., Fagin, B., & Klassner, F. (2006). Do Lego Mindstorms 

robots have a future in CS education? ACM SIGCSE Bulletin, 38(1), 61. 

https://doi.org/10.1145/1124706.1121362 

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer science 

with scratch. Computer Science Education, 23(3), 239–264. 

Merriam, S.B. (1998). Qualitative research and case study applications in education. San 

Francisco, CA: Jossey-Bass. 

Merriam, S.B., Johnson-Bailey, J., Lee, M.-Y., Kee, Y., Ntseane, G., & Muhamad, M. 

(2001). Power and positionality: Negotiating insider/outsider status within and 

across cultures. International Journal of Lifelong Education, 20(5), 405–416. 

http://doi.org/10.1080/02601370120490 

Merriam, S. B. & Tisdell, E. J. (2016). Qualitative research: A guide to design and 

implementation, (4th ed.). Hoboken, N.J.: Wiley. 

Mertler, C. A. (2017). Action research: Improving schools and empowering educators 

(5th ed.). Thousand Oaks, CA: Sage. 



www.manaraa.com

 

246 

Mertens, D.M. (2009).  Research and evaluation in education and psychology: 

Integrating diversity with quantitative, qualitative, and mixed methods. Thousand 

Oaks, CA: Sage. 

Mikropoulos, T., & Bellou, I. (2013). Educational robotics as mindtools. Themes in 

Science & Technology Education., 6(1), 5–14.  

Miller, G. (1956). The magical number seven, plus or minus two: some limits on our 

capacity for processing information. Psychological Review, 101(2), 343–352. 

https://doi.org/10.1037/h0043158 

Mills, G. E. (2018). Action research: A guide for the teacher researcher (6th ed.). New 

York: Pearson.  

Milton, M., Rohl, M., & House, H. (2007). Secondary beginning teacher's preparedness 

to teach literacy and numeracy: A survey. Australian Journal of Teacher 

Education, 32(2). https://doi.org/10.14221/ajte.2007v32n2.4 

Moreno-Leon, J., & Robles, G. (2015). Developing mathematical thinking with Scratch: 

An experiment with 6th grade students. Proceedings of design for teaching and 

learning in a networked world: 10th European conference on technology 

enhanced learning, EC-TEL (Vol. 9307). Toledo, Spain. 

https://doi.org/10.1007/978-3-319-24258-3 

Morgan, D. (2014). Integrating qualitative and quantitative methods: A pragmatic 

approach. Thousand Oaks, CA: Sage. https://doi.org/10.1016/B978-0-444-53802-

4.00055-5 

Morgan, D. (2018). Basic and advanced focus groups. Thousand Oaks, CA: Sage. 



www.manaraa.com

 

247 

Myers, B. A. (1990). Taxonomies of visual programming and program visualization. 

Journal of Visual Languages & Computing, 1(1), 97–123. 

National Association of Colleges and Employers. (2018). Salary survey: Winter 2018. 

Retrieved from https://careers.kennesaw.edu/employers/docs/2018-nace-salary-

survey-winter.pdf 

Navarro-Prieto, R. & Canas, J. J. (2001). Are visual programming languages better? The 

role of imagery in program comprehension. International Journal of Human-

Computer Studies, 54, 799-829. 

Newell, A. & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: 

Prentice-Hall. 

Norman, D. A., & Rumelhart, D. E. (1975). Explorations in cognition. San Francisco, 

CA: Freeman. 

Nugent, G., Barker, B., Grandgenett, N., & Adamchuk, V. (2010). Impact of robotics and 

geospatial technology interventions on youth STEM learning and attitudes. 

Journal of Research on Technology in Education, 42(4), 391-408. doi: 

2056317171. 

O’Keefe, P. A. & Harackiewicz, J. M. (2017). The multifaceted role of interest in 

motivation and engagement. In P.A. O’Keefe & J. M. Harackiewicz (Eds.), The 

Science of Interest. Montreal, Canada: Springer International Publishing. 

https://doi.org/10.1007/978-3-319-55509-6 

Ormerod, T. (1990). Human cognition and programming. In J. M. Hoc, T. R. G. Green, 

R. Samurcay, and D. J. Gilmore (Eds.), Psychology of Programming (63-82). San 

Diego, CA: Academic Press. 



www.manaraa.com

 

248 

Ortiz, A., Bos, B., & Smith, S. (2015). The power of educational robotics as an integrated 

STEM learning experience in teacher preparation programs. Journal of College 

Science Teaching, 44(5). https://doi.org/10.2505/4/jcst15_044_05_42 

Osborne, R. B., Thomas, A. J., & Forbes, J. (2010). Teaching with robots: A service-

learning approach to mentor training. In ACM Technical Symposium on Computer 

Science Education (SIGCSE 2010), Milwaukee, WI. 

https://doi.org/10.1145/1734263.1734321 

Pajares, F. (1996). Self-efficacy beliefs in achievement settings. Review of Educational 

Research 66, 543-578. 

Palak, D., & Walls, R. T. (2009). Teachers’ beliefs and technology practices: A mixed 

methods approach. Journal of Research on Technology in Education, 47(4), 417-

441. 

Pallant, J. (2007). SPSS survival manual: A step by step guide to data analysis using 

SPSS for Windows, 3rd Edition. McGraw Hill Open University Press, New York. 

Papert, S. (1980). Mindstorms: Children, computers and powerful ideas. New York, NY: 

Basic Books. 

Papert, S. (1990). A critique of technocentrism in thinking about the school of the future. 

MIT Epistemology and Learning Memo No. 2. Cambridge, MA: MIT Media 

Laboratory. 

Papert, S. (1993). The children’s machine. New York, NY: Basic Books 

Papert, S. (1999). Constructionism: Research reports and essays. Norwood, NJ: Ablex. 



www.manaraa.com

 

249 

Papert, S., Watt, D., diSessa, A., & Weir, S. (1979). An assessment and documentation of 

a children’s computer laboratory. Final Report of the Brookline Logo Project. 

Brookline, MA.  

Pappas, P. A., & DePuy, V. (2004). An overview of non-parametric tests in SAS: When, 

Why, and How. Duke Clinical Research Institute. Durham: North Carolina. 

Retrieved from http://analytics.ncsu.edu/sesug/2004/TU04-Pappas.pdf. 

Paraskeva, F., Bouta, H., & Papagianni, A. (2008). Individual characteristics and 

computer self-efficacy in secondary education teachers to integrate technology in 

educational practice. Computers and Education, 50(3), 1084–1091. 

https://doi.org/10.1016/j.compedu.2006.10.006 

Parsons, S. A., & Ward, A. E. (2011). The case for authentic tasks in content literacy. 

Reading Teacher, 64, 462–465. doi:10.1598/RT.64.6.12 

Patton, M. Q. (2002). Qualitative research and evaluation methods. Thousand Oaks, CA: 

Sage. 

Pea, R. (1983). Logo programming and problem solving. ERIC Technical Report No. 12. 

Pea, R., & Kurland, M. (1984). On the cognitive effects of learning computer language. 

New Ideas in Psychology, 2(2), 137–168. 

https://doi.org/10.1109/BLOCKS.2015.7368989 

Pennington, N. (1986). Stimulus structures and mental representations in expert 

comprehension of computer programs. Cognitive Psychology, 19, 295-341.  

Pennington, N. (1987). Comprehension strategies in programming. In G. M. Olson, S. 

Sheppard, and E. Soloway (Eds.), Empirical Studies of Programmers: Second 

Workshop (pp. 100-113). Norwood, NJ: Ablex. 



www.manaraa.com

 

250 

Perlman, R. (1974). TORTIS – Toddler’s Own Recursive Turtle Interpreter System. In 

MIT AI Memo 311, Logo Memo 9. Cambridge, MA: Massachusetts Institute of 

Technology, Retrieved from ftp://publications.ai.mit.edu/ai-

publications/pdf/AIM-311.pdf  

Perritt, D. C. (2010). Including professional practice in professional development while 

improving middle school teaching in math. National Teacher Education Journal, 

3(3), 73–76. Retrieved from 

http://ezp.lib.ttu.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true

&db=eue&AN=57457833 

Peshkin, A. (1988). In search of subjectivity – One's own. Educational Researcher, 

17(7), 17-21. Retrieved from 

http://www.jstor.org.pallas2.tcl.sc.edu/stable/1174381 

Petre, M., & Price, B. (2004). Using robotics to motivate ‘back door’ learning. Education 

and Information Technologies, 9(2), 147–158. 

https://doi.org/10.1023/B:EAIT.0000027927.78380.60 

Phillippi, J. & Lauderdale, J. (2018). A guide to field notes for qualitative research: 

Context and conversation. Qualitative Health Research, 28(3). Retrieved from 

https://journals.sagepub.com/doi/pdf/10.1177/1049732317697102 

Piaget, J. (1967). The child’s conception of the world. New York, NY: Routledge & 

Kegan Paul.  

Piaget, J. (1973). To understand is to invent. New York, NY: Basic Books.  

Pintrich, P. R. (1999). The role of motivation in promoting and sustaining self-regulated 

learning. International Journal of Educational Research, 31, 459-470.  



www.manaraa.com

 

251 

Pintrich, P. R., & DeGroot, E. V. (1990). Motivational and self-regulated learning 

components of classroom academic performance. Journal of Educational 

Psychology, 82(1), 33-40.  

Pintrich, P. R., & Schunk, D. H. (1996). Motivation in Education: Theory, Research, and 

Applications. Englewood Cliffs, NJ: Merrill/Prentice-Hall.  

Qualls, J. A., & Sherrell, L. B. (2010). Why computational thinking should be integrated 

into the curriculum. Journal of Computing Sciences in Colleges, 25, 66-71.  

Ramalingam, V., & Wiedenbeck, S. (1997). An empirical study of novice program 

comprehension in the imperative and object-oriented styles. In ESP ’97 Papers 

presented at the seventh workshop on Empirical studies of programmer (pp. 124–

139). https://doi.org/10.1145/266399.266411 

Renninger, K.A., & Hidi, S. (2011). Revisiting the conceptualization, measurement, and 

generation of interest. Educational Psychology 46(3),168–184. 

Resnick, M. (2007). Sowing the seeds for a more creative society. Learning & Leading 

with Technology, 35(4), 18-22. 

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., 

Millner, A., Rosenbaum, E., Silverman, B., & Kafai, Y. (2009). Scratch: 

programming for all. Communications of the ACM, 52(11), 60–67. 

Resnick, M., Ocko, S., & Papert, S. (1988). LEGO, Logo, and design. Children's 

Environments Quarterly, 5(4), 14-18. 

Resnick, M., & Silverman, B. (2005). Some reflections on designing construction kits for 

kids. Proceedings of Interaction Design and Children Conference, Boulder, CO. 



www.manaraa.com

 

252 

Rheinberg, F., Vollymeyer, R., & Burns, B. (2001). FAM: A questionnaire on motivation 

in learning and performance situations. Diagnostica, 47(2), 57–66. 

http://dx.doi.org/10.1026//0012-1924.47.2.57 

Rich, L., Perry, H., & Guzdial, M. (2004). A CS1 course designed to address interests of 

women. Proceedings of the 34th ACM Technical Symposium on Computer 

Science Education (SIGCSE’04). 190–195. 

Roschelle, J., & Teasley, S. D. (1994). The construction of shared knowledge in 

collaborative problem solving. NATO ASI Series F Computer and Systems 

Sciences, 128, 69–69. 

Rogers, C. B., Wendell, K, & Foster, J. (2010). The academic bookshelf: A review of the 

NAE Report, "Engineering in K-12 education.". Journal of Engineering 

Education, 99(2), 179-181. Retrieved from 

http://findarticles.com/p/articles/mi_qa3886/is_201004/ai_n53931016/ 

Rogerson, C., & Scott, E. (2010). The fear factor: How it affects students learning to 

program in a tertiary environment. Journal of Information Technology Education: 

Research, 9, 147–171. https://doi.org/10.28945/1183 

Rudestam, K. E., & Newton, R. R. (2007). Surviving your dissertation: A comprehensive 

guide to content and process. Thousand Oaks, CA: Sage. 

Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of 

intrinsic motivation, social development, and well-being. American Psychologist, 

55, 68–78. 

Ryan, R. M., & Deci, E. L. (2020). Intrinsic and extrinsic motivation from a self-

determination theory perspective: Definitions, theory, practices, and future 



www.manaraa.com

 

253 

directions. Contemporary Educational Psychology, (in press), 101860. 

https://doi.org/10.1016/j.cedpsych.2020.101860 

Sáez-López, J. M., Román-González, M., & Vázquez-Cano, E. (2016). Visual 

programming languages integrated across the curriculum in elementary school: A 

two year case study using “Scratch” in five schools. Computers and Education, 

97, 129–141. https://doi.org/10.1016/j.compedu.2016.03.003 

Saldaña, J. (2016). The coding manual for qualitative researchers (3rd ed.). Thousand 

Oaks, CA: Sage Publications. 

Salkind, N. J. (2010). Encyclopedia of research design (Vols. 1-0). Thousand Oaks, CA: 

SAGE Publications, Inc. doi: 10.4135/9781412961288 

Sandholtz, J.H., & Ringstaff, C. (2014). Inspiring instructional change in elementary 

school science: The relationship between enhanced self-efficacy and teacher 

practices. Journal of Science Teacher Education, 25(6), 729-751. 

https://doi.org/10.1007/s10972-014-9393-0 

Scaife, M., & Rogers, Y. (2005). External cognition, innovative technologies, and 

effective learning. In P. Gardenfors & P. Johansson (Eds.), Cognition, Education 

and Communication Technology (pp. 181-202). Mahwah, NJ: Lawrence Erlbaum 

Associates. 

Schanzer, E. (2015). Algebraic functions, computer programming, and the challenge of 

transfer (Doctoral dissertation). https://doi.org/10.1017/CBO9781107415324.004 

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating 

computational thinking with K-12 science education using agent-based 



www.manaraa.com

 

254 

computation: A theoretical framework. Education and Information Technologies, 

18(2), 351-380. https://doi.org/10.1007/s10639-012-9240-x 

Shafer, D. S. & Zhang, Z. (2012). Introductory statistics. Washington, DC: Saylor 

Foundation.  

Shenton, A.K. (2004). Strategies for ensuring trustworthiness in qualitative research 

projects. Education for Information, 22(2), 63-75. 

Sinclair, C. (2008). Initial and changing student teacher motivation and commitment to 

teaching. Asia-Pacific Journal of Teacher Education, 36(2), 79–104. 

https://doi.org/10.1080/13598660801971658 

Sinclair, C., Dowson, M., & McInerney, D. (2006). Motivations to teach: Psychometric 

and longitudinal perspectives. Teachers College Record, 108(6), 1132–1154. 

Singh, K., Granville, M., & Ditka, S. (2002). Mathematics and science achievement: 

Effects of motivation, interest, and academic engagement. The Journal of 

Educational Research, 95(6). https://doi.org/10.1080/00220670209596607 

Sisman, B., & Kucuk, S. (2019). An educational robotics course: Examination of 

educational potentials and preservice teachers’ experiences. International Journal 

of Research in Education and Science, 5(1), 510–531. Retrieved from 

https://www.ijres.net/index.php/ijres/article/view/505 

Skinner, B. F. (1954). The science of learning and the art of teaching. Harvard Education 

Review 24(2) 86–97. 

Skinner, E. A., Kindermann, T. A., & Furrer, C. J. (2009). A motivational perspective on 

engagement and disaffection. Educational and Psychological Measurement, 

69(3), 493–525. https://doi.org/10.1177/0013164408323233 



www.manaraa.com

 

255 

Smith, M. L. (2013). A case study: Motivational attributes of 4-H participants engaged in 

robotics. (Doctoral dissertation). Retrieved from ProQuest Dissertation & Theses. 

(AAT 3558978) 

Smith, E. E, Shoben, E. J., & Rips, L. J. (1974). Structure and process in semantic 

memory: A featural model for semantic decisions. Psychological Review, 81, 214-

241.  

Soloway, E., & Ehrlich, K. (1984). Empirical studies of programming knowledge. IEEE 

Transactions on Software Engineering, 10(5), 595-609.  

South Carolina Commission on Higher Education. (2016). Consideration of new federal 

Improving Teacher Quality competitive grants awards, FY 2015-16. Columbia, 

SC. Retrieved from 

https://www.che.sc.gov/CHE_Docs/commission%20calendar&materials/2016/Fe

bruary/Agenda_Item_902A.pdf 

South Carolina Department of Education. (2017). South Carolina computer science and 

digital literacy standards. Columbia, SC. Retrieved from 

https://ed.sc.gov/scdoe/assets/File/instruction/standards/Computer%20Science/FI

NAL_South_Carolina_Computer_Science_and_Digital_Literacy_Standards_(SB

EApproved050917)063017.pdf 

Staszowski, K., & Bers, M. U. (2005). The effects of peer interactions on the 

development of technological fluency in an early-childhood, robotic learning 

environment. In Proceedings of the American Society for Education Annual 

Conference & Exposition. Retrieved from 



www.manaraa.com

 

256 

http://labview8.ni.com/pub/devzone/tut/theeffectsofpeer....pdf%5Cnpapers2://pub

lication/uuid/E66F72F2-4596-4B00-81E1-B82EC0FA65F0 

Strauss, A., & Corbin, J. (1990). Basics of qualitative research: Grounded theory 

procedures and techniques. Newbury Park, CA: Sage. 

Strawhacker, A., & Bers, M. U. (2015). “I want my robot to look for food”: Comparing 

kindergartner’s programming comprehension using tangible, graphic, and hybrid 

user interfaces. International Journal of Technology and Design Education, 25(3), 

293–319. https://doi.org/10.1007/s10798-014-9287-7 

Sullivan, F., & Moriarty, M. (2009). Robotics and discover learning: Pedagogical beliefs, 

teacher practice, and technology integration. Journal of Technology and Teacher 

Education, 17, 109–142. Retrieved from 

http://people.umass.edu/florence/jtate.pdf%5Cnpapers2://publication/uuid/284416

E1-4D1B-48FA-8F07-583B7FCCFA47 

Svinicki, M. A. (2010). Guidebook on conceptual frameworks for research in 

engineering education. www.ce.umn.edu/∼Smith/docs/RREE-Research-

Frameworks Svinicki.pdf. 

Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. 

Learning and Instruction, 4, 295–312. https://doi.org/10.1016/0959-

4752(94)90003-5 

Taylor, F. W. (1916). The principles of scientific management. Bulletin of the Taylor 

Society. 

Thompson, G. (2008). Beneath the Apathy. Educational Leadership, 65(6), 50–54. 



www.manaraa.com

 

257 

Trees, F. P. (2010). A meta-analysis of pedagogical tools used in introductory 

programming courses (Doctoral dissertation). Retrieved from 

http://ezproxy.library.nyu.edu:2148/pqdtft/docview/305239837/abstract/138B68F

802A21839DB5/12?accountid=12768%5Cn 

Tsay, C. H., Kofinas, A. K., Trivedi, S. K., & Yang, Y. (2019). Overcoming the novelty 

effect in online gamified learning systems: An empirical evaluation of student 

engagement and performance. Journal of Computer Assisted Learning, 36(2), 

128-146. 

Ucgul, M. (2013). History and educational potential of Lego Mindstorms NXT. Mersin 

University Journal of the Faculty of Education, 9(2), 127–137. 

United States Department of Labor (2018). Employment projections. Washington DC: 

Government Printing Office. Retrieved from 

https://www.bls.gov/emp/tables/fastest-growing-occupations.htm 

Vessey, I. (1985). Expertise in debugging computer systems: A process analysis. 

International Journal of Man–Machine Studies, 23(5), 459–494. https 

://doi.org/10.1016/S0020 -7373(85)80054 -7.  

Vollmeyer, R. R., & Rheinberg, F. (2006). Motivational effects on self-regulated learning 

with different tasks. Educational Psychology Review, 18, 239–253.  

Vygotsky, L. S. (1980). Mind in society: The development of higher psychological 

processes. Cambridge, MA: Harvard University Press. 

Wang, E. (2001). Teaching freshmen design, creativity and programming with LEGOs. 

Proceedings of the 31st ASEE/IEEE Frontiers in Education Conference. Reno, 



www.manaraa.com

 

258 

NV, October 10-13, 2001. Retrieved from 

http://fie.engrng.pitt.edu/fie2001/papers/1291.pdf 

Wang, T. C., Mei, W. H., Lin, S. L., Chiu, S. K., & Lin, J. M. C. (2009). Teaching 

programming concepts to high school students with Alice. Proceedings - 

Frontiers in Education Conference, FIE. 

https://doi.org/10.1109/FIE.2009.5350486 

Wang, X. C., & Ching, C. C. (2003). Social construction of computer experience in a 

first-grade classroom: Social processes and mediating artifacts. Early Education 

and Development, 14(3), 335-361.  

Weintrop, D. (2016). Modality matters: Understanding the effects of programming 

language representation in high school computer science classrooms (Doctoral 

dissertation). Retrieved from ProQuest Dissertation & Theses. (AAT 10160575) 

Weintrop, D., & Wilensky, U. (2015). To block or not to block, that is the question: 

Students’ perceptions of blocks-based programming. Proceedings for the 14th 

International Conference on Interaction Design and Children, (2), 199–208. 

https://doi.org/http://dx.doi.org/10.1145/2771839.2771860 

Weintrop, D., & Wilensky, U. (2017). Comparing block-based and text-based 

programming in high school computer science classrooms. ACM Transactions on 

Computing Education, 18(1), 1–25. https://doi.org/10.1145/3089799 

Werner, L., Campe, S., & Denner, J. (2012). Children learning computer science 

concepts via Alice game-programming. SIGSCE ’12 Proceedings of the 43rd 

ACM Technical Symposium on Computer Science Education, 427–432. 

https://doi.org/10.1145/2157136.2157263 



www.manaraa.com

 

259 

Wiedenbeck, S. (2005). Factors affecting the success of non-majors in learning to 

program. In Proceedings of the Conference on International Computing 

Education Research (ICER’05). 13-24. 

Wigfield, A., & Eccles, J. S. (2000). Expectancy–value theory of achievement 

motivation. Contemporary Educational Psychology, 25, 68–81. 

doi:10.1006/ceps.1999.1015 

Willems, P., & Gonzalez-DeHass, A. R. (2012). School–community partner- ships: Using 

authentic contexts to academically motivate students. School Community Journal, 

22(2), 9–30. 

Wilson, A., & Moffat, D. C. (2010). Evaluating Scratch to introduce younger 

schoolchildren to programming. Proceedings of the 22nd Annual Workshop of the 

Psychology of Programming Interest Group, 64–75. 

Wilson, C., Sudol, L., Stephenson, C., & Stehlik, M. (2010). Running on empty: The 

failure to teach K-12 computer science in the digital age. The Association for 

Computing Machinery. https://doi.org/10.1353/hpu.2010.0941 

Witney, D., & Smallbone, T. (2011). Wild work: Can using wilds enhance student 

collaboration for group assignment tasks? Innovations in Education and Teaching 

International, 48(1), 101–110. doi:10. 1080/14703297.2010.54376. 

Yadav, A., Good, J., Voogt, J., & Fisser, P. (2017). Computational thinking as an 

engineering competence domain. In M. Mulder (Ed.), Competence-based 

vocational and professional education (pp. 1051-1067). 

https://doi.org/10.1007/978-3-319-41713-4_51 



www.manaraa.com

 

260 

Yadav, A., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational thinking in 

elementary and secondary teacher education. ACM Transactions on Computing 

Education, 14(1), 1–16. https://doi.org/10.1145/2576872 

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., & Korb, J. T. (2011). Introducing 

computational thinking in education courses. Proceedings of the 42nd ACM 

technical symposium on computer science education. 

https://doi.org/10.1145/1953163.1953297 

Yamazaki, S., Sakamoto, K., Honda, K., Washizaki, H., & Fukazawa, Y. (2015). 

Comparative study on programmable robots as programming education tools. ACE 

2015. 

Yonghiu, C. (2010). Study of flow theory and experiential learning. Proceedings of the 

2nd International Conference on Multimedia and Information Technology 

(MMIT’10). 2, 334–337.  

Zeni, J. (1998). A guide to ethical issues and action research. Educational Action 

Research, 6(1), 9–19. https://doi.org/10.1080/09650799800200053 

 



www.manaraa.com

 

261 

APPENDIX A  

 ROBOTICS LESSON PLANS, SCHEMATICS, AND EXAMPLES

 

Figure A.1. The lesson plan for Basic Procedures class one. 

  

Lesson Plan: Basic Procedures Class 1 

SC State 

Computer 

Science 

Standards 

• Standard 1: Recognize that many daily tasks can be described as step-by-

step instructions (i.e., algorithms). 

• Standard 4: Develop a program to express an idea or address a problem 

EDUC 204 

Student 

Learning 

Outcome 

• 1) Demonstrate understanding of technology concepts, tools, systems and 

operations to enhance teaching practice, professional productivity, and 

student performance. 

Objectives • Students will be able to test and debug a program 

• Students will be able to create a functioning program 

Materials Lego EV3 robot; computer; Lego EV3 programming software 

Procedures The class will begin with a demonstration of how to use the Basic Procedures 

programming blocks. Special attention will be paid to demonstrating how to 

update each of the programming blocks for number of rotations, degrees, or 

running for a specific number of seconds. How to program the robots to turn will 

also be demonstrated. The debugging process will be demonstrated to help 

participants for when they encounter errors. 

 

Participants will be paired and given a pre-built Lego robot and a laptop with the 

programming software. Pairs of participants will experiment with programming 

the robots. Participants will be instructed to rotate the robot and programming 

hands-on time between each member of the pair so that all pairs receive hands-on 

time programming the robot. The instructor will provide scaffolding as needed 

and will assist with debugging. As an exit ticket to finish the class, participants 

will be asked to share one discovery they have made as a result of their free time. 

Exit Ticket • Share one discovery groups have made while programming their robots 
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Lesson Plan: Basic Procedures Class 2 

SC State 

Computer 

Science 

Standards 

• Standard 1: Recognize that many daily tasks can be described as step-by-

step instructions (i.e., algorithms). 

• Standard 4: Develop a program to express an idea or address a problem. 

EDUC 204 

Student 

Learning 

Outcome 

• 1) Demonstrate understanding of technology concepts, tools, systems and 

operations to enhance teaching practice, professional productivity, and 

student performance. 

Lesson 

Objectives 
• Students will be able to calculate values for a program 

• Students will be able to use different methods of programming to solve a 

problem 

Materials Lego EV3 robot; computer; Lego EV3 programming software; meter stick or pre-

measured one meter of electrical tape 

Procedures To begin, pairs will be instructed on odometry and how teachers can use odometry 

in the classroom. Pairs will be given a pre-built Lego robot and a laptop with the 

programming software. The instructor will explain to the pairs that the robots can 

record how far the robots have travelled. The robots can record how many degrees 

the wheels have rotated. Using this data pairs will calculate how far each wheel 

rotation moves the robot. Pairs will then calculate how far each rotation moves 

their robots. 

 

Then, the One Meter Challenge will be introduced. Pairs will be challenged to 

program their robots to travel one meter in three different ways. The first way 

pairs can program their robots to move one meter is by using the move steering 

program block and customizing the number of rotations to their calculated 

odometer length. The second way pairs can program their robots is by a total 

number of degrees based on their calculations. The third way is that pairs can 

program their robots to move at a certain power for a certain number of seconds to 

reach one meter. The instructor will roam the room and provide scaffolding as 

needed. 

Figure A.2. The lesson plan for Basic Procedures class two. 

 

Figure A.3. A possible solution for the One Meter Challenge. 
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Lesson Plan: Advanced Procedures Class 1 

SC State 

Computer 

Science 

Standards 

• Standard 1: Design, evaluate, and modify simple algorithms (e.g., steps 

to make a sandwich; steps to a popular dance; steps for sending an 

email). 

• Standard 3: Decompose problems into subproblems and write code to 

solve the subproblems (i.e., break down a problem into smaller parts). 

 

EDUC 204 

Student 

Learning 

Outcome 

• 1) Demonstrate understanding of technology concepts, tools, systems 

and operations to enhance teaching practice, professional productivity, 

and student performance. 

Lesson 

Objectives 
• Students will be able to predict the outcome of a program 

• Students will be able to modify a simple program 

Materials Paper; pencil; Lego EV3 robot; computer; Lego EV3 programming software; 

Lego EV3 box 

Description The instructor will start by introducing turning to participants. After 

demonstrating how to program turns, the instructor will demonstrate how to write 

pseudocode and how teachers can use pseudocode in the classroom.  

 

Then, the instructor will introduce the lap activity. Participants will be divided 

into pairs and will be given a pre-built Lego robot and a laptop with the 

programming software. For the lap activity, pairs will be challenged to modify a 

given program so that their robots move around the box their robot came in. The 

robots must complete one full lap around the box without touching the box or 

straying outside of one foot from the box. Pairs will note that not all turns will be 

accurate due to friction and grip. The instructor will provide scaffolding as 

needed. Pairs will be instructed to make sure they save their Lap Activity 

programs, because they will be used again later. 

Figure A.4. The lesson plan for Advanced Procedures class one. 

 

Figure A.5. A possible solution for the Lap Activity. 
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Lesson Plan: Advanced Procedures Class 2 

SC State 

Computer 

Science 

Standards 

• Standard 1: Design, evaluate, and modify simple algorithms (e.g., steps 

to make a sandwich; steps to a popular dance; steps for sending an 

email). 

• Standard 3: Decompose problems into subproblems and write code to 

solve the subproblems (i.e., break down a problem into smaller parts). 

 

EDUC 204 

Student 

Learning 

Outcome 

• 1) Demonstrate understanding of technology concepts, tools, systems 

and operations to enhance teaching practice, professional productivity, 

and student performance. 

Lesson 

Objectives 
• Students will be able to predict the outcome of a program 

• Students will be able to create a program to solve a problem 

Materials Paper; pencil; Lego EV3 robot; computer; Lego EV3 programming software; 

maze made of electrical tape 

Procedures The class will begin with another pseudocode demonstration and activity. 

Pseudocode will be reviewed. Participants will divide into pairs of four students 

and will be given a pre-built Lego robot and a laptop with the programming 

software. Then, pairs will write their pseudocode for navigating a maze. After 

pairs have created their pseudocode for navigating the maze, the pairs will 

translate their pseudocode into programming to solve the Maze Challenge.  

 

Six identical mazes will be marked off with black electrical tape on the floor 

throughout the classroom for efficiency in order to provide ample opportunity for 

pairs to test their programming. The robots should not touch the lines as they 

navigate the maze. If pairs complete the maze successfully in before the class 

period is over, they will be invited to try to solve the maze from the unmarked 

corner to the other unmarked corner in a much more difficult programming 

challenge. The instructor will provide scaffolding as needed. 

Figure A.6. The lesson plan for Advanced Procedures class two. 

 

Figure A.7. The schematic for the Maze Challenge. Plans for this maze are derived from 

the Coastal Robotics curriculum. 
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Lesson Plan: Control Structures Class 1 

SC State 

Computer 

Science 

Standards 

• Standard 2: Use and compare simple coding control structures (e.g., if-

then, loops). 

EDUC 204 

Student 

Learning 

Outcome 

• 1) Demonstrate understanding of technology concepts, tools, systems and 

operations to enhance teaching practice, professional productivity, and 

student performance. 

Lesson 

Objectives 
• Students will be able to predict the outcome of a program that uses control 

structures  

• Students will be able to create a program using control structures 

Materials Lego EV3 robot; computer; Lego EV3 programming software; meter stick or pre-

measured one meter of electrical tape 

Procedures To begin, pairs will be instructed on control structures and how teachers can use 

wait, switch, and looping concepts to teach basic computer programming concepts 

in the classroom. Participants will predict the outcomes of the demonstrated 

programs. The instructor will then demonstrate how to write a program using each 

of the control structures. Participants will divide into pairs and will be given a pre-

built Lego robot and a laptop with the programming software. 

 

After that, the instructor will introduce the Slithering One Meter Activity. Pairs will 

then begin programming their robots to complete the activity. Pairs will test their 

programs against either a meter stick or a pre-cut line of tape measuring one meter. 

The instructor will provide scaffolding as needed. 

Figure A.8. The lesson plan for Control Structures class one. 

Figure A.9. A possible solution for the Slithering One Meter Challenge. 
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Lesson Plan: Control Structures Class 2 

SC State 

Computer 

Science 

Standards 

• Standard 2: Use and compare simple coding control structures (e.g., if-

then, loops). 

EDUC 204 

Student 

Learning 

Outcome 

• 1) Demonstrate understanding of technology concepts, tools, systems and 

operations to enhance teaching practice, professional productivity, and 

student performance. 

Lesson 

Objectives 
• Students will be able to modify a simple program using control structures 

• Students will be able to create a program using control structures 

Materials Lego EV3 robot; computer; Lego EV3 programming software; Lego EV3 box 

Description To begin, pairs will be instructed on looping and how teachers can use looping to 

teach basic computer programming concepts in the classroom. The instructor will 

then demonstrate how to write a loop in the programming editor.  

 

After that, the instructor will introduce the Lap Loop Challenge. For this activity, 

pairs must modify their Lap Activity programs utilizing loops. Participants will 

divide into pairs and will be given a pre-built Lego robot and a laptop with the 

programming software. Pairs will then begin by modifying their programs from the 

Lap Activity. Pairs will test their programs around their robots’ boxes. The 

instructor will provide scaffolding as needed and remind the students that the 

straight and turn commands need to be looped to complete one lap before playing a 

sound. 

Figure A.10. The lesson plan for Control Structures class two. 

 

Figure A.11. A possible solution to the Lap Loop Challenge. 
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Lesson Plan: Variables Class 1 

SC State 

Computer 

Science 

Standards 

• Standard 5: Identify variables and compare the types of data stored as 

variables. 

EDUC 204 

Student 

Learning 

Outcome 

• 1) Demonstrate understanding of technology concepts, tools, systems and 

operations to enhance teaching practice, professional productivity, and 

student performance. 

Lesson 

Objectives 
• Students will be able to predict the outcome of a program based on the 

given variables. 

• Students will be able to create a program using variables. 

Materials Lego EV3 robot; computer; Lego EV3 programming software; blue tape; red tape 

Procedures The class will begin with the instructor demonstrating variables and explaining how 

teachers can use variables in their curricula. Participants will predict the outcomes 

of programs based on example variables. The instructor will demonstrate how to 

write a program with variables in the programming editor. The instructor will also 

demonstrate to participants how the color sensor works. Participants will divide 

into pairs and will be given a pre-built Lego robot and a laptop with the 

programming software. 

 

In the Red Light learning activity, pairs will have to program their robots to speed 

up when the color sensor detects blue and stop when the color sensor detects red. 

This programming will involve the switch and a speed variable. The instructor will 

walk around the room and provide scaffolding as needed. 

Figure A.12. The lesson plan for Variables class one. 

 

 

Figure A.13. A schematic of the Red Light Activity. 
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Lesson Plan: Variables Class 2 

SC State 

Computer 

Science 

Standards 

• Standard 4: Develop a program to express an idea or address a problem. 

• Standard 5: Identify variables and compare the types of data stored as 

variables. 

EDUC 204 

Student 

Learning 

Outcome 

• 1) Demonstrate understanding of technology concepts, tools, systems and 

operations to enhance teaching practice, professional productivity, and 

student performance. 

Lesson 

Objectives 
• Students will be able to create a program using variables. 

• Students will be able to modify a program using variables. 

Materials Lego EV3 robot; computer; Lego EV3 programming software; maze made of black, 

blue, and red tape 

Procedures Participants will divide into pairs and will be given a pre-built Lego robot and a 

laptop with the programming software. The Maze with Variables challenge will then 

be introduced to students. For the challenge, pairs will be instructed to utilize the wait 

block and the if/then statement block under the Flow Control heading as well as the 

variable block and the math block under the Data Operations heading. These 

functions will be reviewed.  

 

For this challenge, the mazes utilized in the Maze challenge will be modified. Green 

pieces of tape will be added to the mazes at points where the robots would need to 

turn left. Red pieces of tape will be added for spots where the robots should turn right. 

Every time the robots encounter a green line, they will turn left and execute the math 

sequence of x + 1 to count the turn on the EV3’s screen. The robots should stop when 

they detect the black tape to keep the robots from leaving the maze and stopping at 

the finish. Pairs will complete this challenge when they successfully navigate their 

robots to the end of the maze using programming which utilizes movement, control 

structures, and variables. 

Figure A.14. The lesson plan for Variables class two. 

 

 

Figure A.15. A schematic for the Maze with Variables Challenge. This maze is derived 

from the Coastal Robotics curriculum. 
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Figure A.16. A possible solution for the Maze with Variables Challenge. 
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APPENDIX B  

PROGRAMMING COMPREHENSION ASSESSMENT

Basic Procedures 

1. If one meter is equal to 2160o of turning on a wheel, which block set to number of 

rotations will move the robot half a meter? 

a.  

 

b.  

 

c.  

 

d.  
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e.  

 

 

2. If (1 meter = 6 rotations = 2160o = 4.25 seconds) at 50% power, which of these 

programs will move the robot exactly 7 meters? 

a. 

  

b. 

  

c. 

  

d. 
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e. 

  

 

3. Arrange these pieces so the resulting program is executable and moves the robot 

forward for two seconds, backward for two rotations, and then forward for 720 degrees.  

 

a. i, ii, iii, iv 

b. ii, i, iv, iii 

c.  iii, ii, i, iv 

d. iv, iii, i, ii 

e. iv, i, iii, ii 

 

4. How would you debug the block of programming below so that the robot moves 

backward for three seconds at 100% power and then coasts? 
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a. Update the power to 100%.  

b. Update the time to 0.03. 

c.  Update brake at end to true. 

d. Update the ports for the proper move steering motor. 

e. All of these. 

 

5. Which of these movement blocks would you add to build a program which moves the 

robot forward until it encounters a black line, then it backs up? 

 

 

 

 

a.  

 

 

 

 

b.  
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c.   

 

 

 

 

d.  

 

 

 

 

e. 

 

 

 

 

Advanced Procedures 

6. Where would a robot running this programming finish at the end of the program? 

 

a. To the left of the starting position. 

b. To the right of the starting position. 

c. Directly in front of the starting position. 

d. Directly behind the starting position. 

e. At the exact same point as the starting position. 
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7. Where would a robot running this programming finish at the end of the program? 

 

a. To the left of the starting position. 

b. To the right of the starting position. 

c. Directly in front of the starting position. 

d. Directly behind the starting position. 

e. At the exact same point as the starting position. 

 

8. Finish the program with the arranged segments to perform the action on the diagram. 

 

 

 

a. 

 

b. 

 

c.   

 

d. 

5 

4 
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e. 

 

 

9. Identify the program designed to perform the action in the diagram. 

 

 

 

 

a. 

 

b. 

 

c.   

 

d. 
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e. 

 

 

10. Your friend writes a program to move a car in a backward C shape, but the program 

keeps moving in an S shape. Identify which segment is incorrectly programmed. 

 

 

 

 

 

 

a. The first movement block. 

b. The second movement block. 

c. The third movement block. 

d. The fourth movement block. 

e. The fifth movement block. 

 

Control Structures 

11. Which of the following loop sequences will say a different word after ever four turns? 

a. 
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b. 

 

c. 

 

d. 

 

e. 

 

 

12. Which loop option simplifies this program? 

 

a.  
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b.  

 

c.   

 

d.  

 

e.  

 

 

13. Given the conditional if/then statement, what will happen if the robot detects black? 
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a. It will turn left. 

b. It will turn right. 

c.  It will continue moving straight until it detects either black, blue, or green. 

d. It will continue straight for one rotation. 

e. It will stop. 

 

14. How many times will the following program say “hello” before ending? 
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a. 2 

b. 3 

c.  5 

d. 6 

e. 12 

 

15. Finish creating an algorithm so that the car moves in the pattern on the ground as 

demonstrated in the graphic on the right. 

 

 

a. Place before the first programming block inside the loop. 

 

b. Place after the first programming block inside the loop. 

 

c.  Place after the last programming block inside the loop. 

 

d. Swap each of the turn blocks within the algorithm. 
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e. Change the loop count from 2 to 4. 

 

Variables 

16. Which algorithm counts each black line it encounters forever? 

 

a.  

 

b.  

 

c.  

 

d.  

 

e. 
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17. Given the pictured conditional if/then statement, what will happen each time the robot 

detects a black line? 

 

 

a. It will speed up 10 power up to a maximum of 100 power. 

b. It will slow down 10 power up to a maximum of -100 power. 

c. It will count by positive 10. 

d. It will count by negative 10. 

e. It will reverse.  
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18. Your friend is building an algorithm which will increment a variable by one and turn 

left at each green line encountered. Choose the string of programming in which the 

variable increases by one at each green line encountered and displays the updated count 

textually on the EV3’s display to complete this algorithm. 

 

a. 

 

b. 

 

c.   

 

d. 

 

e. 
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19. Given the variable, what will this program do? 

 

a. Move at a power of 25 for 720o and then move at a power of 1 forever after that. 

b. Move at a power of 25 for two rotations and then move 5 rotations at a power of 50. 

c.  Not move. 

d. Move at a power of 50 for two rotations and then move at a power of 25 for 5 

rotations. 

e. Move at a power of 50 for 720 o and then slow down to a power of 1 for 5 rotations. 

 

 

20. Create a program with a variable value of 25 which will subtract 15 power from the 

motor for each line it encounters. 

 

a. (I) 25; (II) Subtract; (III) 25 

b. (I) 15; (II) Add; (III) 15  

c. (I) 25; (II) Add; (III) 15 

I 

 

I
II
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d. (I) 15; (II) Subtract; (III) 25 

e. (I) 25; (II) Subtract; (III) 1 
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APPENDIX C  

COMPREHENSION ASSESSMENT ALIGNMENT TABLES

Table C.1. Basic Procedures Assessment Question, Lesson Objective, and SC State Computer Science Standard Alignment 

 

  

Assessment Question Lesson Objective Computer Science Standard 

1. If one meter is equal to 2160o of turning on a 

wheel, which block set to number of rotations 

will move the robot half a meter? 

Calculate odometry for a program Standard 4: Develop a program to 

express an idea or address a 

problem  

2. If (1 meter = 6 rotations = 2160o = 4.25 

seconds) at 50% power, which of these programs 

will move the robot exactly 7 meters? 

Use different ways to program a 

robot to move a given distance 

 

Standard 4: Develop a program to 

express an idea or address a 

problem  

3. Arrange these pieces so the resulting program 

is executable and moves the robot forward for 

two seconds, backward for two rotations, and 

then forward for 720 degrees.  

Create a program for the robot 

 

Standard 1: Recognize that many 

daily tasks can be described as 

step-by-step instructions (i.e., 

algorithms). 

4. How would you debug the block of 

programming below so that the robot moves 

backward for three seconds at 100% power and 

then coasts? 

Test and debug a program Standard 4: Develop a program to 

express an idea or address a 

problem 

5. Which of these movement blocks would you 

add to build a program which moves the robot 

forward until it encounters a black line, then it 

backs up? 

Create a program for the robot 

 

Standard 1: Recognize that many 

daily tasks can be described as 

step-by-step instructions (i.e., 

algorithms). 



www.manaraa.com

 

288 

Table C.2. Advanced Procedures Assessment Question, Lesson Objective, and SC State Computer Science Standard Alignment 

 

Assessment Question Lesson Objective Computer Science Standard 

6. Where would a robot running this 

programming finish at the end of the program? 

Predict the outcome of a program Standard 1: Design, evaluate, and 

modify simple algorithms (e.g., 

steps to make a sandwich; steps to 

a popular dance; steps for sending 

an email). 

7. Where would a robot running this 

programming finish at the end of the program? 

 

Predict the outcome of a program Standard 1: Design, evaluate, and 

modify simple algorithms (e.g., 

steps to make a sandwich; steps to 

a popular dance; steps for sending 

an email). 

8. Finish the program with the arranged 

segments to perform the action on the diagram. 

 

Create a program to solve a 

problem 

 

Standard 3: Decompose problems 

into subproblems and write code to 

solve the subproblems (i.e., break 

down a problem into smaller parts). 

9. Identify the program designed to perform the 

action in the diagram. 

 

Predict the outcome of a program Standard 1: Design, evaluate, and 

modify simple algorithms (e.g., 

steps to make a sandwich; steps to 

a popular dance; steps for sending 

an email). 

10. Your friend writes a program to move a car 

in a backward C shape, but the program keeps 

moving in an S shape. Identify which segment is 

incorrectly programmed. 

Modify a simple program Standard 3: Decompose problems 

into subproblems and write code to 

solve the subproblems (i.e., break 

down a problem into smaller parts). 
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Table C.3. Control Structures Assessment Question, Lesson Objective, and SC State Computer Science Standard Alignment 

 

Assessment Question Lesson Objective Computer Science Standard 

11. Which of the following loop sequences will 

say a different word after ever four turns? 

Predict the outcome of an 

algorithm that uses control 

structures 

Standard 2: Use and compare 

simple coding control structures 

(e.g., if-then, loops). 

12. Which loop option simplifies this program? 

 

Modify a simple algorithm using 

control structures 

Standard 2: Use and compare 

simple coding control structures 

(e.g., if-then, loops). 

13. Given the conditional if/then statement, what 

will happen if the robot detects black? 

 

Predict the outcome of an 

algorithm that uses control 

structures 

Standard 2: Use and compare 

simple coding control structures 

(e.g., if-then, loops). 

14. How many times will the following program 

say “hello” before ending? 

 

Predict the outcome of an 

algorithm that uses control 

structures 

Standard 2: Use and compare 

simple coding control structures 

(e.g., if-then, loops). 

15. Finish creating an algorithm so that the car 

moves in the pattern on the ground as 

demonstrated in the graphic on the right. 

Create an algorithm using control 

structures 

 

Standard 2: Use and compare 

simple coding control structures 

(e.g., if-then, loops). 
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Table C.4. Variables Assessment Question, Lesson Objective, and SC State Computer Science Standard Alignment 

 

Assessment Question Lesson Objective Computer Science Standard 

16. Which algorithm counts each black line it 

encounters forever? 

Predict the outcome of an 

algorithm that uses control 

structures 

Standard 2: Use and compare 

simple coding control structures 

(e.g., if-then, loops). 

17. Given the pictured conditional if/then 

statement, what will happen each time the robot 

detects a black line? 

Modify a simple algorithm using 

control structures 

Standard 2: Use and compare 

simple coding control structures 

(e.g., if-then, loops). 

18. Your friend is building an algorithm which 

will increment a variable by one and turn left at 

each green line encountered. Choose the string of 

programming in which the variable increases by 

one at each green line encountered and displays 

the updated count textually on the EV3’s display 

to complete this algorithm. 

Predict the outcome of an 

algorithm that uses control 

structures 

Standard 2: Use and compare 

simple coding control structures 

(e.g., if-then, loops). 

 

19. Given the variable, what will this program 

do? 

Predict the outcome of an 

algorithm that uses control 

structures 

Standard 2: Use and compare 

simple coding control structures 

(e.g., if-then, loops). 

20. Create a program with a variable value of 25 

which will subtract 15 power from the motor for 

each line it encounters. 

Create an algorithm using control 

structures 

 

Standard 2: Use and compare 

simple coding control structures 

(e.g., if-then, loops). 
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APPENDIX D  

EXPERT REVIEWERS’ VALIDATION FEEDBACK

 

Reviewer 1 

I already stole the whole thing. It progresses in difficulty quickly with Week 3 and 4 

being pretty brutal. Teachers with foundational experience should be able to figure this 

out. I will probably use these in group work for students – assigning each question to a 

group and having students actually program each answer and run the bots to observe, 

then report the results. 

This is a great example of a test with variety – construct/deconstruct, code/debug, 

matching, etc. 

What kind of [redacted] helped write the K-8 CS standards? 

For specifics goes: 

• Overall the questions are succinct and unambiguous. 

• My current students and even the [school redacted] CS kids might be confused by 

the diagram on question #8. 

• At first glance it appears that the bot goes up, like straight up. Students should 

figure it out when analyzing the answers. For some reason, the diagrams for #9 

and #10 are more clear to me – go left or right not up. The diagram for #15 is iffy 

and I can see students trying to jump the bot.  
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• The Lego screen capture for #11 is too small for this old guy. You may have to 

break them up or put them landscape on a separate page. I have this problem often 

– kids taking a test and complaining that they can’t see what’s in the boxes. 

• For #18 “friend is building an algorithm which will add by one and turn left . . .” I 

would suggest “increment by one” or “increment a variable by one” For some 

reason, “add by one” doesn’t jive with me. 

• #20 is a [redacted] and I’m not sure I can figure it out. I like the idea of the 

answers corresponding to blank boxes in the code. I’m gonna steal that idea too. 

 

Reviewer 2 

My sincere apologies for not replying earlier. It’s been a very difficult semester for me. 

Overall I really like this. I’ve been teaching an engineering course using the EV3s for the 

past year (that also uses our mazes). These questions would have been very helpful for 

my assessments. 

I’ve attached my version of the assessment key that includes my comments. Please 

double-check my work, I'm a bit exhausted this afternoon. I’ll also be around for the next 

two weeks if you want to follow up with me on my comments. 

A couple of last comments. When I started up my version of the EV3-G software I got 

the attached message. It appears the LEGO Education is making a move to a newer 

version of their programming language. Also for the last semester I’ve been working with 

Python version of the software, 

https://education.lego.com/en-us/support/mindstorms-ev3/python-for-ev3 
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It’s not bad. Just something to think about before going all in with the lesson plans and 

assessment instruments you’re developing. 

• #1: I think the answer should be 3 rotations not 6 rotations. If 1 meter = 2160  

then half a meter would be 1080°. If I then take 1080° and divide by 360° I get 3. 

So I think item (a) is the correct answer. 

• #9: The diagram implies that the robot performs a point turn at the junction (a 

pivot turn would also work). This occurs when the steering parameter is set to +/- 

100 or +/- 50 for a pivot turn. Most of the options include curve turns which will 

cause the robot to move forward in an arcing path. I don’t think any of the options 

are correct. Option (B) doesn’t work because it’s missing the final move forward 

segment. 

• #17: Up to a maximum of 100. So after 10 lines it won’t continue making the 

robot move faster. The variable value will still increase, but the actual speed value 

in the final green block will max out at 100. 

• #18: Not that affects the answer, but there is an extra floating bubble that says 

“Port: 3” on the image. It may be confusing. 

• #19: The first Move Steering block is set to a power of 25 not 50.
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APPENDIX E  

PROGRAMMING MOTIVATION SURVEY

Demographic Information 

Please select the choice which best describes you. 

 

Age: 

0 – 100 

Gender: 

Male – Female 

Classification: 

Freshman – Sophomore – Junior – Senior 

Education major concentration: 

Early Childhood – Elementary – Middle Level – Special Education – Physical Education 

I would rate my technology comfort level as: 

Low – Medium – High 

I have prior programming experience. 

Yes – No 

I have had prior programming instruction. 

Yes – No 

I have prior experience programming a robot.  

Yes – No 

I have had prior robotics instruction. 

Yes – No 

Programming Motivation 

Please indicate your level of agreement with each of the following statements: 

1 (strongly disagree), 2 (disagree), 3 (neutral), 4 (agree), 5 (strongly agree) 

 

1. Programming is relevant to my life. 

1 – 2 – 3 – 4 – 5 

2. Teaching programming would benefit my students. 

1 – 2 – 3 – 4 – 5 

3. Learning programming is interesting. 

1 – 2 – 3 – 4 – 5 

4. I am confident in learning programming 

1 – 2 – 3 – 4 – 5 

5. I put enough effort into learning programming. 

1 – 2 – 3 – 4 – 5 

6. I use various strategies to learn programming well. 

1 – 2 – 3 – 4 – 5 

7. Learning programming will help me get a good job. 

1 – 2 – 3 – 4 – 5 

8. Programming activities will enhance my students’ learning 

1 – 2 – 3 – 4 – 5 

9. I am confident I will do well on programming tests. 

1 – 2 – 3 – 4 – 5 

10. Knowing programming will give me a career advantage. 

1 – 2 – 3 – 4 – 5 
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11. I spend a lot of time learning programming. 

1 – 2 – 3 – 4 – 5 

12. Learning programming makes my life more meaningful. 

1 – 2 – 3 – 4 – 5 

13. Understanding programming will benefit me in my career. 

1 – 2 – 3 – 4 – 5 

14. I am confident I will do well on programming activities. 

1 – 2 – 3 – 4 – 5 

15. I believe I can master programming knowledge and skills.  

1 – 2 – 3 – 4 – 5 

16. I concentrate fully on what I do when I work on programming activities. 

1 – 2 – 3 – 4 – 5 

17. I am curious about advancing my programming skills. 

1 – 2 – 3 – 4 – 5 

18. I plan to incorporate programming into my teaching. 

1 – 2 – 3 – 4 – 5 

19. I enjoy learning programming.  

1 – 2 – 3 – 4 – 5 

20. I look for additional resources to improve my skills when learning programming. 

1 – 2 – 3 – 4 – 5 

21. I enjoy teaching programming to others 

1 – 2 – 3 – 4 – 5 

22. I can teach programming in my future courses 

1 – 2 – 3 – 4 – 5 

23. My career will involve programming.  

1 – 2 – 3 – 4 – 5 

24. I can write advanced programs 

1 – 2 – 3 – 4 – 5 

25. I will use programming problem-solving skills in my career. 

1 – 2 – 3 – 4 – 5 

Figure E.1. The Programming Motivation Survey adapted from the Science Motivation 

Questionnaire II © 2011 Shawn M. Glynn. 
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APPENDIX F  

ADAPTATION OF SMQ-II 

 
SMQ-II Programming Motivation Survey 

Intrinsic Motivation 

Learning science is interesting. Learning programming is interesting. 

I am curious about discoveries in science. I am curious about advancing my programming skills.* 

The science I learn is relevant to my life. Programming is relevant to my life. 

Learning science makes my life more meaningful. Learning programming makes my life more meaningful. 

I enjoy learning science. I enjoy learning programming.  

Career Motivation 

Learning science will help me get a good job. Learning programming will help me get a good job. 

Understanding science will benefit me in my career. Understanding programming will benefit me in my 

career. 

Knowing science will give me a career advantage. Knowing programming will give me a career advantage. 

I will use science problem-solving skills in my career. I will use programming problem-solving skills in my 

career. 

My career will involve science. My career will involve programming.  

Self-Determination 

I study hard to learn science. I concentrate fully on what I do when I work on 

programming activities.* 

I prepare well for science tests and labs. I look for additional resources to improve my skills 

when learning programming.* 

I put enough effort into learning science. I put enough effort into learning programming. 

I spend a lot of time learning science. I spend a lot of time learning programming. 

I use strategies to learn science well I use various strategies to learn programming well. 

Self-Efficacy 

I believe I can earn a grade of “A” in science. I am confident in learning programming.* 

I am confident I will do well on science tests. I am confident I will do well on programming tests. 

I believe I can master science knowledge and skills. I believe I can master programming knowledge and 

skills. 

I am sure I can understand science I can write advanced programs.* 

I am confident I will do well on science labs and 

projects. 

I am confident I will do well on programming activities. 

Grade Motivation Motivation to Integrate Programming into Teaching* 

Scoring high on science tests and labs matters to me. I plan to incorporate programming into my teaching.* 

It is important that I get an “A” in science. I can teach programming in my future courses. * 

I think about the grade I will get in science. I enjoy teaching programming to others. * 

Getting a good science grade is important to me. Programming activities will enhance my students’ 

learning. * 

I like to do better than other students on science tests. Teaching programming would benefit my students. * 

Figure F.1. The adaptations of the Programming Motivation Survey statements and 

subscales from the Science Motivation Questionnaire II © 2011 Shawn M. Glynn.   

Note. * Indicates replacement. 
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APPENDIX G  

INDIVIDUAL INTERVIEW PROTOCOL

Introduction 

Hello (interview participant), 

Thank you for taking time to sit down with me today. As you know, my name is 

Mr. Fegely.  I am a doctoral candidate in the Education Department at the University of 

South Carolina.  I am conducting a research study as part of the requirements of my 

degree in Curriculum and Instruction - Educational Technology, and I would like to 

invite you to participate. 

I am studying programming comprehension and motivation among preservice 

teachers.  If you decide to participate, you will participate in an individual interview 

about programming motivation.  In particular, we will discuss your experiences with the 

programming activities performed in class over the past few weeks.  You do not have to 

answer any questions that you do not wish to answer.  The interview will take place at in 

this classroom and should last about 30 minutes.  The session will be audio and video 

recorded so that I can accurately transcribe what is discussed.  The footage will only be 

reviewed by members of the research team and destroyed upon completion of the study.  

Participation is confidential.  Study information will be kept in a secure location.  

The results of the study may be published or presented at professional meetings, but your 

identity will not be revealed. Remember, participation, non-participation or withdrawal 

will not affect your grades in any way.   
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I will be happy to answer any questions you have about the study now or later by 

phone or email.  You may contact me at extension [redacted] or [redacted].  

Thank you for your consideration.  If you would like to participate, I will begin 

with the instructions for how this interview will operate.   

I have prepared questions about your experiences with programming. Please 

answer them openly and honestly with substantial depth. Remember, there are no wrong 

answers. Please feel free to present your perspective even if you do not believe it is 

shared by myself or others. I have twelve main questions for you. Once I present the 

question, feel free to share your perspective and experiences. As the interviewer, I may 

interject to ask qualifying questions, but mainly I will be listening to your responses. Let 

us begin now. 

Questions 

1. What aspects, if anything, interested you in the programming activities? 

• Prompt: Can you explain what you found interesting about those programming 

activities?  

2. Tell me about your experiences with the programming activities in the course. 

• Prompt: Which one(s) was(were) most enjoyable? Explain. 

• Prompt: Which one(s) was(were) least enjoyable? Explain.  

3. How do you think learning programming will influence your career after graduation? 

• Prompt: Can you give me an example of how you feel learning programming will 

influence your career after graduation?  

4. In what ways do you believe learning programming would be valuable to you as a 

teacher? 
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• Prompt: How has your opinion changed since the beginning of this course?  

5. Can you tell me about a time when you felt learning programming was hard? 

• Prompt: Why did you feel this way? 

• Prompt: How did you overcome that situation?  

6. Tell me about a time you put in extra effort over the past four weeks to research 

additional resources to help you during the programming activities. 

• Prompt: How did you make the decision to seek additional resources? 

7. Tell me about your current state of programming knowledge and skills? 

• Prompt: How do you think it has changed since the beginning of this course? 

8. What are your feelings on learning even more advanced programming?  

9. Where do you position yourself in the continuum of adding or not adding 

programming activities to your classes? Why?  

10. Tell me about your thoughts on how programming activities would fit into the grade 

level and subject area you will teach? 

• Prompt: Can you please give me an example programming activity for the grade 

or subject area you will be teaching. 

11. Which programming activities do you feel were effective in helping you learn 

programming? 

• Prompt: What suggestions would you make to improve the programming 

activities in this course? 

12. Do you have any questions for me? 

 That concludes our interview. I will share a copy of the transcript of this interview 

with you via email in the coming days. Please let me know if there is anything in the 
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transcript which you feel does not properly communicate what you were trying to say. 

Remember, you can opt out at any time. Thank you for the time and effort you have put 

into answering these questions.
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APPENDIX H  

UNIVERSITY IRB APPROVAL

 

 

 

OFFICE OF RESEARCH COMPLIANCE 

 

 

 

INSTITUTIONAL REVIEW BOARD FOR HUMAN RESEARCH 

APPROVAL LETTER for EXEMPT REVIEW 

 

 

 

Alex Fegely  

[Redacted] 

Myrtle Beach, SC 29579 USA 

 

Re: Pro00095457 

 

Dear Mr. Alex Fegely: 

 

This is to certify that the research study Learning Programming Through Robots: A Mixed-Methods Study on the 

Effects of Educational Robotics on Programming Comprehension and Motivation of Preservice Teachers was 
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reviewed in accordance with 45 CFR 46.104(d)(1), the study received an exemption from Human Research Subject 

Regulations on 12/18/2019. No further action or Institutional Review Board (IRB) oversight is required, as long as the 

study remains the same. However, the Principal Investigator must inform the Office of Research Compliance of any 

changes in procedures involving human subjects. Changes to the current research study could result in a 

reclassification of the study and further review by the IRB.   

 

Because this study was determined to be exempt from further IRB oversight, consent document(s), if applicable, are 

not stamped with an expiration date. 

 

All research related records are to be retained for at least three (3) years after termination of the study. 

 

The Office of Research Compliance is an administrative office that supports the University of South Carolina 

Institutional Review Board (USC IRB). If you have questions, contact Lisa Johnson at lisaj@mailbox.sc.edu or (803) 

777-6670. 

 

 

Sincerely,  

Lisa M. Johnson 

ORC Assistant Director and IRB Manager 
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APPENDIX I  

RESEARCH SITE IRB APPROVAL

November 20, 2019 

 

Alex Fegely 

Education 

[redacted] 

[redacted] 

 

RE:  Learning Programming Through Robots 

 

Alex, 

 

It has been determined that your protocol #2020.97 is approved as EXEMPT by the [redacted] 

University Institutional Review Board (IRB) under the Federal Policy for the Protection of Human 

Research Subjects categories #1 & 2.  

 

This approval is good for one calendar year commencing with the date of approval and 

concludes on 11/19/2020). If your work continues beyond this date it will be necessary seek a 

continuation from the IRB. If your work is concluded before this date, please so inform the IRB. 

 

Approval of this protocol does not provide permission or consent for faculty, staff or students 

to use university communication channels for contacting or obtaining information from 

research subjects or participants. Faculty, staff and students are responsible for obtaining 

appropriate permission to use university communications to contact research participants. For 

use of university e-mail to groups such as all faculty/staff, all students or other large groups 
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on campus permission must be first obtained by the researcher from the Office of the Provost 

after the research protocol has been approved by the IRB. Please allow at least one week to 

receive approval. 

 

Please note, it is the responsibility of the Principal Investigator to report immediately to the IRB 

any changes in procedures involving human subjects and any unexpected risks to human 

subjects, any detrimental effects to the rights or welfare of any human subjects participating in 

the project, giving names of persons, dates of occurrences, details of harmful effects, and any 

remedial actions. Such changes may affect the status of your approved research. 

 

Be advised that study materials and documentation, including signed informed consent forms, 

must be retained for at least three (3) years after termination of the research and shall be 

accessible for purposes of audit.  

 

If you have any questions concerning this Review, please contact [redacted], IRB Coordinator, at 

[redacted] or extension 2978. 

 

 

Thank you, 

 

[redacted] 

Director, Office of Sponsored Programs and Research Services 

IRB Administrator
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APPENDIX J  

CONSENT FORMS

 
Informed Consent for Human Subject Research Participation 

 

 

Introduction 

My name is Alex Fegely and I am a faculty member [redacted]. I would like to invite you 

to take part in my research study entitled, Learning Programming Through Robots. You 

are free to talk with someone you trust about your participation in this research and may 

take time to reflect on whether you wish to participate or not. If you have any questions, I 

will answer them now or at any time during the study. 

 

Purpose 

The purpose of this research study is to evaluate the effects educational robotics have on 

programming comprehension and motivation of preservice teachers. 

 

Procedures 

During this research study, you will take motivation comprehension assessments, 

programming motivation surveys, and possibly be asked questions as part of an 

individual interview. 

 

Duration  

For this research study, your participation will be required for 5 weeks of in-class time. 

 

Rights 

You do not have to agree to participate in this research study. If you do choose to 

participate, you may choose not to at any time once the study begins. There is no penalty 

for not participating or withdrawing from the study at any time. If you are a [redacted] 

student, your decision to participate or not will have no affect your grade. 

 

Risks 

During this research study, no risks or discomforts are anticipated. 

 

Benefits 

By agreeing to participate in this research study you may help a better understanding of 

programming and its applications with educational robotics. 
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Confidentiality 

Unless you provide consent to the contrary, the confidentiality of your participation in 

this research study, your responses or any individual results will be maintained by the PI 

and all members of the research team. 

 

Note that confidentiality will only be violated when required by law or the ethical 

guidelines of the American Psychological Association. This usually includes, but may not 

be limited to, situations when your responses indicate that you, or another clearly 

identified individual, is at risk of imminent harm or situations in which faculty are 

mandated reporters, such as instances of child abuse or issues covered under Title IX 

regulations. For more information about Title IX, please see the University’s webpage at: 

[redacted]. 

 

Sharing the Results  

As the Principal Investigator on this research study, I plan to share the results of this 

study with my dissertation committee and by publishing in peer-reviewed journals and 

presenting at academic conferences. None of the material published or presented will 

have any identifying information. 

 

Contacts 

If you have any questions about this research study, please feel free to contact me by 

phone [redacted] or [redacted].  

 

The Institutional Review Board (IRB) under the Office of Sponsored Programs and 

Research Services is responsible for the oversight of all human subject research 

conducted at [redacted]. If you have any questions about your rights as a research 

participant before, during or after the research study, you may contact this office by 

calling [redacted]or emailing OSPRS@[redacted].edu. 

 

 

************************************************************ 

 

mailto:OSPRS@coastal.edu
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Consent  

 

I have read this form and have been able to ask questions of the PI and/or discuss my 

participation with someone I trust. I understand that I can ask additional questions at any 

time during this research study and am free to withdraw from participation at any time.  

 

I agree to take part in this research study. 

 

 

I agree to allow my name or other identifying information to be included in 

reports, publications and/or presentations resulting from this research study. 

 

I DO NOT agree to allow my name or other identifying information to be 

included in reports, publications and/or presentations resulting from this research 

study. 

 

 

 

Participant’s signature:  

  

 

Date:  

 

 
 

Photography, Video or Audio Recording Authorization 

 

I hereby release, discharge and agree to save harmless [redacted], its successors, assigns, 

officers, employees or agents, any person(s) or corporation(s) for whom it might be 

acting, and any firm publishing and/or distributing any photograph, video footage or 

audio recording produced as part of this research, in whole or in part, as a finished 

product, from and against any liability as a result of any distortion, blurring, alteration, 

visual or auditory illusion, or use in composite form, either intentionally or otherwise, 

that may occur or be produced in the recording, processing, reproduction, publication or 

distribution of any photograph, videotape, audiotape or interview, even should the same 

subject me or my to ridicule, scandal, reproach, scorn or indignity. I hereby agree that the 

photographs, video footage and audio recordings may be used under the conditions stated 

herein without blurring my identifying characteristics. 

 

If you have any questions about this research study, please feel free to contact me by 

phone [redacted] or [redacted]. 

 

The Institutional Review Board (IRB) under the Office of Sponsored Programs and 

Research Services is responsible for the oversight of all human subject research 
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conducted at [redacted]. If you have any questions about your rights as a research 

participant before, during or after the research study, you may contact this office by 

calling [redacted] or emailing OSPRS@[redacted].edu. 

 

I have read this authorization and have been able to ask questions of the PI and/or discuss 

my participation with someone I trust. I understand that I can ask additional questions at 

any time during this research study and am free to withdraw from participation at any 

time. 

 

 

 

Participant’s signature:  

  

 

Date:  

 

mailto:OSPRS@coastal.edu
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