
www.manaraa.com

University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Theses and Dissertations

Fall 2020

Learning Programming Through Robots: A Mixed-Methods Study Learning Programming Through Robots: A Mixed-Methods Study

on the Effects of Educational Robotics on Programming on the Effects of Educational Robotics on Programming

Comprehension and Motivation of Preservice Teachers Comprehension and Motivation of Preservice Teachers

Alex Geoffrey Fegely

Follow this and additional works at: https://scholarcommons.sc.edu/etd

 Part of the Curriculum and Instruction Commons

Recommended Citation Recommended Citation
Fegely, A. G.(2020). Learning Programming Through Robots: A Mixed-Methods Study on the Effects of
Educational Robotics on Programming Comprehension and Motivation of Preservice Teachers. (Doctoral
dissertation). Retrieved from https://scholarcommons.sc.edu/etd/6172

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please
contact dillarda@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F6172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/786?utm_source=scholarcommons.sc.edu%2Fetd%2F6172&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/6172?utm_source=scholarcommons.sc.edu%2Fetd%2F6172&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dillarda@mailbox.sc.edu

www.manaraa.com

LEARNING PROGRAMMING THROUGH ROBOTS: A MIXED-METHODS STUDY ON

THE EFFECTS OF EDUCATIONAL ROBOTICS ON PROGRAMMING

COMPREHENSION AND MOTIVATION OF PRESERVICE TEACHERS

by

Alex Geoffrey Fegely

Bachelor of Science

Temple University, 2012

Master of Education

Coastal Carolina University, 2014

Education Specialist

Coastal Carolina University, 2017

Submitted in Partial Fulfillment of the Requirements

For the Degree of Doctor of Education in

Curriculum and Instruction

College of Education

University of South Carolina

2020

Accepted by:

Hengtao Tang, Major Professor

Ismahan Arslan-Ari, Committee Member

Lucas Vasconcelos, Committee Member

Anna Clifford, Committee Member

Cheryl L. Addy, Vice Provost and Dean of the Graduate School

www.manaraa.com

ii

© Copyright by Alex Geoffrey Fegely, 2020

All Rights Reserved.

www.manaraa.com

iii

DEDICATION

 This dissertation is for my wife. Thank you for caring for me and sending me

Uber Eats when you were at work, and I was not eating during all-day writing sessions.

This dissertation is also for my parents. Thank you for your support with my move to

South Carolina and my academic career. I would not be here without everything you have

done for me.

www.manaraa.com

iv

ACKNOWLEDGEMENTS

 Thank you to my chair, Dr. Hengtao Tang, for your patience, guidance, and

insights throughout this process. Thank you for taking me on this summer and being my

mentor throughout this process. I have learned so much from you. Thank you to my

committee members, Dr. Ismahan Arslan-Ari, Dr. Lucas Vasconcelos, and Dr. Anna

Clifford, for dedicating your time to make this the best possible dissertation through your

recommendations and critical analyses. Thank you to Dr. Fatih Ari who helped guide this

study in its earliest days. Thank you to Dr. Tammi Kolski and Dr. William Morris for

your support. Finally, thank you to Dr. Michael Grant for your confidence in me.

www.manaraa.com

v

ABSTRACT

The purpose of this action research was to evaluate the effect educational robotics

have on the programming comprehension and motivation of preservice teachers.

Computer science is increasingly being integrated into K-8 curricula across the country.

However, there are few teachers trained to teach basic computer science concepts. Core

subject teachers are being asked to shoulder the load of integrating computer science

concepts into their instruction. Educational robotics have gained attention for their

potential to aid users with comprehension and motivation while learning to program. This

convergent parallel mixed methods research thus investigated (1) the effect of

educational robotics on preservice teachers’ comprehension of programming concepts,

and (2) how and to what extent that educational robotics influence preservice teachers'

motivation related to programming. This study utilized educational robotics to teach

preservice teachers (N = 18) programming. Data were obtained through a pretest/posttest

Programming Comprehension Assessment, a pre/post Programming Motivation Survey,

individual interviews, and field notes. Paired sample t-tests, Wilcoxon signed-ranks tests,

and inductive analysis were used to analyze the data. Quantitative data exhibited

significant score increases from pretest to posttest, and significant motivation increases

from pre-survey to post-survey. Qualitative data revealed five themes; (1) participants

perceived that a problem-based robotics curriculum improved their intrinsic motivation

toward programming, (2) participants agreed that knowing programming as a skill had

advantages as a teacher, (3) participants experienced self-determination towards

www.manaraa.com

vi

programming in the face of robotics challenges, (4) participants perceived that the

gradually increasing level of difficulty in the robotics curriculum improved their self-

efficacy about programming from initially low levels, and (5) participants perceived

programming as a viable fit in their future classrooms. The findings of this study indicate

that preservice teachers’ comprehension of programming concepts and motivation related

to programming can be improved through educational robotics. This research has

implications for informing preservice teacher educators integrating programming

concepts into their instruction. Recommendations are provided for programming

curriculum design.

www.manaraa.com

vii

TABLE OF CONTENTS

Dedication .. iii

Acknowledgements .. iv

Abstract ..v

List of Tables ...x

List of Figures ... xii

Chapter 1: Introduction ..1

National Context ..1

Local Context ...4

Statement of the Problem ...5

Researcher Subjectivities and Positionality ...6

Definition of Terms..10

Chapter 2: Literature Review ...14

Programming..15

Educational Robotics ...24

Impact of Educational Robotics on Programming Comprehension36

Impact of Educational Robotics on Motivation Related to Programming49

Chapter Summary ..60

Chapter 3: Method ...63

Research Design...63

Setting and Participants..66

www.manaraa.com

viii

Intervention ..68

Data Collection Methods and Data Sources ..82

Data Analysis ...91

Procedures and Timeline..95

Rigor and Trustworthiness ...99

Plan for Sharing ...103

Chapter 4: Analysis and Findings ..105

Quantitative Analysis and Findings ...106

Qualitative Findings and Interpretations ..120

Themes ...137

Integrating Quantitative and Qualitative Findings ...162

Chapter Summary ..165

Chapter 5: Discussion, Implications, and Limitations ...167

Discussion ..167

Implications..197

Limitations ...214

References ..219

Appendix A: Robotics Lesson Plans, Schematics, and Examples261

Appendix B: Programming Comprehension Assessment ..270

Appendix C: Comprehension Assessment Alignment Tables .. 287

Appendix D: Expert Reviewers’ Validation Feedback ... 291

Appendix E: Programming Motivation Survey ...294

Appendix F: Adaptation of SMQ-II ...296

www.manaraa.com

ix

Appendix G: Individual Interview Protocol ..297

Appendix H: University IRB Approval ...301

Appendix I: Research Site IRB Approval ..303

Appendix J: Consent Forms ...305

www.manaraa.com

x

LIST OF TABLES

Table 2.1 Significant Educational Robotics Findings in K-12 Education28

Table 3.1 Participants’ Demographic Information ..68

Table 3.2 Robotics Intervention Units ...70

Table 3.3 Programming Motivation Survey Subscale and Lesson Aspect Alignment71

Table 3.4 Basic Procedures Lesson Plan Alignment ...72

Table 3.5 Advanced Procedures Lesson Plan Alignment ..74

Table 3.6 Control Structures Lesson Plan Alignment ...79

Table 3.7 Variables Lesson Plan Alignment..81

Table 3.8 Research Questions and Data Sources Alignment ...83

Table 3.9 Programming Motivation Survey Subscale Alignment86

Table 3.10 Individual Interview Question Alignment ...90

Table 3.11 Research Questions, Data Sources, and Data Analysis Method Alignment91

Table 3.12 Timeline and Procedures ...95

Table 4.1 Item Difficulty – Programming Comprehension Assessment Posttest108

Table 4.2 Shapiro-Wilk Normality Tests – Programming

 Comprehension Assessment ..109

Table 4.3 Data Analysis Method Alignment Based on Normality

 of Data – Programming Comprehension Assessment ...110

Table 4.4 Paired Sample t-Tests – Programming Comprehension

 Assessment Averages...111

Table 4.5 Wilcoxon Signed-Ranks Tests – Programming

 Comprehension Assessment Averages ..113

www.manaraa.com

xi

Table 4.6 Cronbach’s Alpha Reliability – Programming Motivation Survey114

Table 4.7 Descriptive Statistics – Programming Motivation Survey114

Table 4.8 Shapiro-Wilk Normality Tests – Programming Motivation Survey116

Table 4.9 Data Analysis Method Alignment Based on Normality

 of Data – Programming Motivation Survey...117

Table 4.10 Paired Sample t-Tests – Programming Motivation

 Survey Likert Scale Agreement ...119

Table 4.11 Wilcoxon Signed-Ranks Test – Programming Motivation Survey120

Table 4.12 Interviewees’ Demographic Information ...122

Table 4.13 Summary of Qualitative Data Sources...123

Table 4.14 Cycle 2 – Final Pattern Codes ..129

Table 4.15 Summary of Themes, Categories, and Example Open Codes138

Table 4.16 Integrating Quantitative and Qualitative Findings – Motivation163

www.manaraa.com

xii

LIST OF FIGURES

Figure 2.1 Differences between text-based and block-based programming languages18

Figure 3.1 Line following activity ..76

Figure 3.2 Partners write a maze program ..77

Figure 3.3 Participants test their programs in the mazes ..78

Figure 3.4 Example feedback from expert ...84

Figure 4.1 Open coding in the Delve web tool ..124

Figure 4.2 Open coding of field notes in Delve ...124

Figure 4.3 Split coding in Delve ..125

Figure 4.4 Example of coding schemes ...126

Figure 4.5 Sorting of open codes into pattern codes ..127

Figure 4.6 A concept map of the coding process ...133

www.manaraa.com

1

CHAPTER 1

INTRODUCTION

National Context

Computer science is being integrated into K-8 curricula at an increasing rate

nationally (Burke, Schep, & Dalton, 2016; Wilson, Sudol, Stephenson, & Stehlik, 2010).

However, the number of teachers trained to teach basic computer science concepts from

kindergarten to 12th grade in America’s public-school system is low (Burke et al., 2016;

Google Inc. & Gallup Inc., 2016; Mannila et al., 2014; Wilson et al., 2010). The nation’s

shortage of teachers knowledgeable in computer science concepts is bottlenecking our

country’s economy and stunting the economic potential of America’s youth (Burke et al.,

2016; Wilson et al., 2010). As of 2018, there are more than half a million unfilled

computing jobs in the United States (United States Department of Labor, 2018).

Meanwhile, computer science majors earn the second-highest initial salary among college

graduates (National Association of Colleges and Employers, 2018). Consequently, 91%

of parents want their children to learn computer science while even more – 93% – want

their children’s school to teach computer science (Google Inc. & Gallup Inc., 2016).

According to a survey by Google Inc. and Gallup Inc. (2016) in which over 12,000

principals and superintendents were polled, only 40% of elementary principals and 59%

of middle school principals offered at least one computer science course in their school.

In the same study, 73% of principals and 71% of superintendents either strongly agreed

www.manaraa.com

2

or agreed that computer science education should be integrated into the core subjects to

alleviate this problem (Google Inc. & Gallup Inc., 2016).

Wilson et al. (2010) pointed to two primary reasons why even America’s

youngest and most tech-savvy teachers do not meet student, parent, and economic

demands for computer science instruction in the classroom: unpreparedness and

apprehension. In their report, Wilson et al. (2010) detailed an ominous national climate in

which “very few pre-service teacher preparation programs have the current capacity or

coursework developed to prepare computer science teachers” (p. 12). Although few

preservice education programs around the country prepare teachers to implement

computer science concepts in their teaching (Wilson et al., 2010), a lack of opportunities

for preservice teachers to learn effective computer science pedagogy is not the only

obstacle facing the nation (Israel, Pearson, Tapia, Wherfel, & Reese, 2015). The national

dearth of teachers with computer science competency is often attributed to a pervasive

impression of intimidation among teachers vis-a-vis learning and teaching unfamiliar

computing concepts (Curzon, Cutts, & Bell, 2009; Grover & Pea, 2013; Meerbaum-

Salant, Armoni, & Ben-Ari, 2013). Teachers experience anxiety developing and

performing instruction on unfamiliar computer topics in front of their classes (Curzon et

al., 2009; Grover & Pea, 2013). Teachers’ lack of confidence parallels with low self-

efficacy and motivation (Sandholtz & Ringstaff, 2014) and negatively impacts teachers’

effectiveness (Babaei & Abednia, 2016; Kreijns, Van Acker, Marjan, & Van Buuren,

2013; Bandura, 1997; Paraskeva, Bouta, & Papagianni, 2008). Thus, Israel et al. (2015)

noted that teachers of younger students might erroneously feel that computer science can

only be taught through high-level computer programming languages like C++ or Java.

www.manaraa.com

3

Due to the intimidating reputation of computer science, teachers may be less likely to

implement any programming instruction in younger students’ courses at all, denying

students the chance to develop their knowledge of programming languages and computer

science (Israel et al., 2015).

With America’s lack of a formal plan for training teachers in computer science

(Burke et al., 2016; Google Inc. & Gallup Inc., 2016), researchers have suggested

remedies to make learning programming less intimidating (Sengupta, Kinnebrew, Basu,

Biswas, & Clark, 2013; Fessakis, Gouli, & Mavroudi, 2013; Good, 2011). A study by

Sengupta et al. (2013) showed that in-service teachers who initially demonstrated

apprehension about learning computer programming found basic block-based

programming languages to be valuable. Other studies have shown that teachers’ positive

self-efficacy on technology concepts correlates to improved instructional practices with

technology (Ertmer & Ottenbreit-Leftwich, 2010; Ertmer, Ottenbreit-Leftwich, Sadik,

Sendurur, & Sendurur, 2012). According to Good (2011), less difficult block-based

programming languages designed to “lower the computational floor” (p. 18) can be used

to build novice programmers’ motivation and self-efficacy with programming (Fessakis

et al., 2013). Therefore, block-based programming languages can be leveraged to cut

through preservice teachers’ initial apprehension of computer science concepts before

they enter the field, thus cultivating teachers that are more competent with computer

science.

Papert (1980) published the seminal research on programming instruction with his

Logo programming language and on-screen turtle drawing activities. Since then, the

pairing of basic programming languages and robotics have become more prominent in

www.manaraa.com

4

America’s schools, with the toy brick company Lego advancing to the forefront of public

prominence (Martin, Mikhak, Resnick, Silverman, & Berb, 2000; Martin et al., 2011;

Martin & Resnick, 1993). Dodds, Greenwald, Howard, Tejada, and Weinberg (2006)

reported that “A key advantage of the most popular platforms,” such as Lego, “is the

variety of ways in which students can program them” (p. 12). Thus, robotics kits flip

students’ typical experience of learning how to operate technologies into learning how to

create technologies (Burke & Kafai, 2014; Casler-Failing, 2017). Numerous studies have

demonstrated that students as young as four can construct robots from kits and program

the robots to perform simple tasks (Bers, 2008; Bers, Ponte, Juelich, Viera, & Schenker,

2002; Cejka, Rogers, & Portsmore, 2006; Kazakoff, Sullivan, & Bers, 2013; Strawhacker

& Bers, 2015) while studies on preservice teachers have suggested positive results related

to robotics, programming comprehension, and motivation (Jaipal-Jamani & Angeli, 2017;

Kim et al., 2015; Kucuk & Sisman, 2018; Ortiz, Bos, & Smith, 2015). It can be inferred

from these noteworthy studies that educational robotics can provide a promising method

for both teaching programming and motivating preservice teachers to use programming.

Local Context

South Carolina released its K-8 Computer Science and Digital Literacy Standards

in May of 2017 (South Carolina Department of Education, 2017). A survey of 158 K-12

South Carolina teachers by Burke et al. (2016) reported that the primary obstacles of

teaching computer science in the state are a lack of time and dedicated computer science

courses. With few schools offering dedicated computer science courses for K-8 students,

non-computer science teachers have been asked to integrate computer science teaching

into other subjects (Burke et al., 2016; Google Inc. & Gallup Inc., 2016). Thus,

www.manaraa.com

5

preservice teachers must be prepared to integrate content from The South Carolina

Department of Education’s (2017) K-8 Computer Science and Digital Literacy Standards

such as “Standard 4: Develop a program to express an idea or address a problem” and

“5.AP.4.1. Use a visual language to design and test a program that solves a simple task”

(p. 23-32). The Running on Empty report (Wilson et al., 2010) implored federal, state,

and local governments to “Create pre-service and professional development opportunities

for computer science teachers” and “Expand professional development opportunities and

recruit new computer science teachers” (p. 10). To date, however, South Carolina’s

Department of Education has not advanced formal guidelines for colleges to integrate

these computer science standards into current preservice teacher education programs.

The South Carolina K-8 Computer Science and Digital Literacy Standards (South

Carolina Department of Education, 2017) are currently being integrated into an

undergraduate educational technology class at the university where this study takes place.

I implemented a programming unit of instruction that utilized educational robotics. The

aim of this unit was to both prepare K-8 preservice teachers to integrate programming

into their instruction and motivate them to use programming through creative educational

robotics programming activities.

Statement of the Problem

New K-8 Computer Science and Digital Literacy Standards have been introduced

in the state of South Carolina (South Carolina Department of Education, 2017). With few

K-8 schools offering stand-alone computer science courses, principals are relying upon

teachers of other subjects to integrate computer science concepts into their classes (Burke

et al., 2016; Google Inc. & Gallup Inc., 2016). Therefore, K-8 preservice teachers of non-

www.manaraa.com

6

computer science subjects must be prepared and motivated to integrate content from the

South Carolina Department of Education’s (2017) standards such as “develop a program

to express an idea or address a problem” and “use a visual language to design and test a

program that solves a simple task” into their instruction (p. 23-32). However, studies

have shown that teachers can experience difficulties with traditional abstract methods of

learning programming (Bower et al., 2017; Grover & Pea, 2013; Israel et al., 2015; Ortiz

et al., 2015; Resnick et al., 2009). For these reasons, teachers need to be able to both

comprehend programming concepts and be motivated to use and teach programming.

Purpose Statement

 The purpose of this action research was to evaluate the effect educational robotics

have on programming comprehension and motivation of preservice teachers at a medium-

sized liberal arts university in the southeastern United States.

Research Questions

1. What is the effect of educational robotics on preservice teachers’ comprehension

of programming concepts?

2. How and to what extent does educational robotics influence preservice teachers’

motivation related to programming?

Researcher Subjectivities & Positionality

Peshkin (1988) explained that a researcher’s subjectivities “have the capacity to

filter, skew, shape, block, transform, construe, and misconstrue what transpires from the

outset of a research project to its culmination in a written statement” (p. 17). By outlining

my positionality and subjectivities before delving into my research, I can assess the

assumptions I have about my participants and what perceptions I believe my participants

www.manaraa.com

7

will have about me. From this reflection, I can understand how subjectivity and

positionality principles influence this study.

I am a lecturer and instructional technology specialist within the research location.

I have experience with educational technology as a former K-12 public-school student

and later, as a high school teacher and college instructor. While a student, I was

motivated by using technology for as many projects as I could, creating podcasts,

educational videos, and other technology-focused projects. During graduate school, I

worked as a web developer and graphic designer. As a teacher at a STEM high school, I

found it rewarding to integrate my students’ interests in engineering and computer

science with social studies class content by including programming and 3D modeling

assignments. Currently, I have experience with educational technology as a doctoral

student, college instructor, and instructional technology specialist. I have also co-directed

a grant that taught middle school and high school science and math teachers in a low

socioeconomic school system on how to integrate programming and robotics concepts

into their instruction. From these experiences, I have solidified the belief that educational

technology is an integral part of K-12 and college education. In my judgment, to fully

prepare our students for the future economy, computer science concepts must be

integrated into school curricula at the earliest opportunity.

An adage states that you are not who you are, nor are you who you think you are.

You are, in fact, who you think others think you are. Action research is a collaboration

between the researcher and participants (Creswell, 2014; Mertler, 2017). The researcher

and the participants work closely together; therefore, it is paramount to understand

www.manaraa.com

8

participants’ perceptions of the researcher in order to see the study with a more authentic

view.

My positionality in this study is best described by Dwyer and Buckle (2009) as

that of an “insider-outsider” from “the space between” (p. 60). I perceive my participants

to mainly assign my status to be that of an insider, which Dwyer and Buckle (2009)

explained as “sharing the characteristic, role, or experience under study with the

participants” (p. 55). As a former education major and teacher, I share my participants’

background, life calling, and ideology. As an alumnus of this study’s research location, I

share many of the same experiences as my participants both inside and outside of school.

As a university lecturer who teaches my participants every day, I am an insider with them

through our shared experience of my class. I come from a middle-class family, as many

of my students do. Although I may not share the exact same experiences as all my

students, I feel as though I come from a background similar enough to empathize and

relate. However, I realize that my participants may ascribe my status to be that of an

outsider because I hold grading power over them. In addition, I am much older than they

are, and I am not currently an undergraduate student sitting with them in class. Due to my

shared background with my students as an insider and my outsider power position within

the study, I cannot be one or the other (Dwyer & Buckle, 2009). Instead, I am a hybrid

insider-outsider.

Being an insider-outsider for my study is a double-edged sword. Dwyer and

Buckle (2009) noted that insiders enjoy quick and more open acceptance into the

participant population than do outsiders. I identify with my participants’ day-to-day lived

experiences, and my participants may ascribe more trust to me than to an outsider. They

www.manaraa.com

9

may be more open and truthful with their responses, especially in the case of my

individual interview qualitative data collection. On the negative side, as an insider, I may

be inherently biased due to not being removed from the participant population (Dwyer &

Buckle, 2009; Merriam et al., 2001). As Merriam et al. (2001) noted, as a partial insider I

may not be “curious enough to raise provocative questions” (p. 411). Therefore, I must be

conscientious about removing myself as much as necessary from my participants’

standpoint and ask tough questions to exercise the perspective more commonly

associated with an outsider.

As the researcher, I must establish how my interpretations are influenced by my

personal value system (Mertens, 2009). My personal paradigm aligns with the pragmatist

standpoint. As Hathcoat and Meixner (2015) have described, I will utilize a “plurality of

methods to address valued aims of inquiry” in my study (p. 435). From my pragmatist

view, my relationship with my participants will impact the results of my research.

Corresponding to my insider-outsider role, pragmatists choose an appropriate depth of

relationship with their participants relevant to the goals of the research (Mertens, 2009).

Ontologically, my study will utilize the multiple viewpoints of my participants in

quantitative and qualitative metrics to thoroughly understand the problem and present

subsequent solutions (Frels & Onquegbuzie, 2013). To curtail my power influence over

the participants, I will position myself within the action research study and classroom as

an insider-outsider collaborator. I aim to present myself as a helpful scaffold for student

learning as opposed to the traditional powerful teacher role in order to cultivate trust

(Herr & Anderson, 2005). Considering my participants’ diverse viewpoints, I must

appropriately separate myself from my deep-seated beliefs that computer science

www.manaraa.com

10

concepts are relevant to K-8 students and can be creatively linked to most subject areas

by teachers. I must take the stance closer to a participant wherein my life experience with

educational technology and computer science has not yet crystallized in order to respect

and value my participants’ perceptions.

Definition of Terms

Block-based Programming

This study utilized Weintrop’s (2016) definition to operationalize the term block-

based programming. Weintrop’s (2016) definition explains that block-based

programming languages “leverage a programming-primitive-as-puzzle-piece metaphor”

through on-screen programming environments in which users engage the language by

“dragging blocks into a canvas and snapping them together to form scripts” to write an

executable computer program (p. 58).

Career Motivation

 This study used Arwood’s (2004) characterization of career motivation. Arwood

(2004) describes that career motivation is exhibited when learners understand the subject

being learned as relevant to their future careers.

Educational Robotics

Educational robotics is a term used to identify versions of robotics designed for

teaching or learning. Ortiz et al. (2015) provided the definition of educational robotics

which will guide this study: “Educational robotics is a specific application of K–12

engineering education and offers students physical manipulatives that are familiar and

easy to work with as they participate in the engineering design process” (p. 43).

www.manaraa.com

11

Educational Robotics Practices

This study used Catlin’s (2012) definition to operationalize educational robotics

practices. Catlin (2012) characterizes educational robotics practices as an instructional

strategy that uses educational robotics for instructional purposes.

Intrinsic Motivation

 Intrinsic motivation was operationalized by Ryan and Deci’s (2000) description of

the term. Ryan and Deci (2000) define intrinsic motivation as a learner’s desire to learn

about a topic due to their inherent interest and “innate psychological needs for

competence and autonomy” with the topic (p. 65).

Motivation

This study utilized Pintrich and Schunk’s (1996) definition of motivation. Pintrich

and Schunk (1996) operationalize the term motivation as “the process whereby goal-

directed activity is instigated and sustained” (p. 4).

Motivation to Integrate Programming into Teaching

 Motivation to Integrate Programming into Teaching (MTIPIT) was defined based

on research on teacher motivation and its combination of intrinsic, extrinsic, and altruistic

factors (Brookhart & Freeman, 1992; Han & Yin, 2016; Sinclair, 2008). This study

operationalized the term based on Han and Yin’s (2016) characterization of teacher

motivation. In this study, MTIPIT is defined as the reasons an individual chooses to use

and teach programming based on intrinsic and contextual factors.

www.manaraa.com

12

Programming

Ceruzzi’s (1998) definition of computer programming was used to operationalize the

term programming in this study. Computer programming is the process of designing and

creating instructions for computers to perform specific tasks (Ceruzzi, 1998).

Programming Comprehension

Ala-Mutka’s (2004) definition of programming comprehension best aligns with

the goals and instruments utilized in this study and will be used to operationalize the term

programming comprehension. Ala-Mutka (2004) describes programming comprehension

as the “ability to track code to build a mental model of the program and predict its

behavior” (p. 5).

Robots

The robots used in this context are Lego EV3 educational robots running the

EV3-G programming language that are developmentally appropriate for the K-8 learners

that preservice teachers who participate in the study will have in the classroom (Martin et

al., 2000; Martin et al., 2011; Martin & Resnick, 1993). The EV3 educational robotics

kits are part of a Lego universe that “extends the traditional Lego bricks with a central

control unit (the RCX), as well as motors and various kinds of sensors” (Koller & Kruijff,

2004, p. 1).

Self-determination

 In this study, self-determination will be operationalized by Black and Deci’s

(2000) definition of the term. Black and Deci (2000) define self-determination as the

control learners have over their learning.

www.manaraa.com

13

Self-efficacy

 Bandura’s (1997) research on self-efficacy will be used in this study. Self-efficacy

is defined in this study as learners’ confidence in their ability to achieve the learning task

(Bandura, 1997).

www.manaraa.com

14

CHAPTER 2

LITERATURE REVIEW

The purpose of this action research was to evaluate the effects educational

robotics have on programming comprehension and motivation of preservice teachers at a

medium-sized liberal arts university in the southeastern United States. This review of

literature addresses two research questions. The research questions in this study are (1)

what is the effect of educational robotics on preservice teachers’ comprehension of

programming concepts? and (2) how and to what extent does educational robotics

influence preservice teachers' motivation related to programming?

 In order to form a comprehensive foundation of knowledge on the topics of

programming and educational robotics as they pertain to teacher education, four main

paths of inquiry were formed to guide my literature search: (1) programming in K-12

education, (2) programming in teacher education, (3) educational robotics in K-12

teaching, and (4) educational robotics in teacher education. The search terms for each of

these four paths of inquiry were varied, and database filters were utilized to identify full-

text, peer-reviewed articles from academic journals that represented the most relevant and

rigorous literature. The ERIC database was my most-used tool to identify pertinent

articles for this literature review. A small amount of pertinent literature was found

through searches on Education Source and Google Scholar that did not appear in the

ERIC database. I also accessed ProQuest Dissertations and Theses to identify

dissertations related to my research. Ancestral searches through the references of

www.manaraa.com

15

germane literature were used to strengthen the foundation of this literature review.

Google Scholar and ResearchGate were used to access many of these ancestral studies

not found on the educational research databases.

 This resulting literature review is organized into four key sections, including (1)

programming, (2) educational robotics, (3) impact of educational robotics on

programming comprehension, and (4) impact of educational robotics on motivation

related to programming. The first section overviews the literature on programming to

provide the reader with a foundational understanding of programming and how it fits into

education. The next section explains the use of educational robotics as learning tools for

novices being introduced to programming. The final sections offer syntheses of studies

involving programming and educational robotics. Special attention is paid to teacher

education and what these studies found in relation to the impacts of educational robotics

on programming comprehension and motivation.

Programming

Programming is a major construct identified in this study’s research questions. In

this section, programming and its associated aspects will first be defined. Next, block-

based programming languages and the ways in which learners interact with such

programming languages will be explained. Then, programming’s context in education

will be detailed. Finally, studies that uncovered difficulties experienced by in-service and

preservice teachers while learning to program will be shared. These details on

programming will provide readers with a foundational understanding of the central

construct being evaluated in this study.

www.manaraa.com

16

Defining Programming

Programming is a main construct in this study. At its root, Böhm and Jacopini

(1966) have explained that programming “is where flow diagrams are introduced with

different purposes and defined in connection with the descriptions of algorithms or

programs” (p. 366). Ceruzzi, (1998), defined computer programming more broadly as the

process of designing and creating instructions for computers to perform specific tasks,

known as programs. Programs have also been described by Dijkstra (1976) as

“algorithms intended for automatic execution on computers” (p. 8). Programs are created

with programming notation techniques, commonly referred to as programming languages

(Dijkstra, 1976). Programming includes processes of computational thinking, and

misconceptions discussed in the literature note that teachers and students believe the two

to be the same (Lu & Fletcher, 2009; Qualls & Sherrell, 2010). Yamazaki, Sakamoto,

Honda, Washizaki, and Fukazawa (2015) proposes that “computational thinking is a

common concept to various programming languages” (p. 157). Various definitions of

computational thinking include aspects about how its processes are fundamental to

programming, including problem-solving, concurrency, sequences, variable

representation, loops, conditionals, calculation, and abstraction (Kafai & Burke, 2014;

Sengupta et al., 2013; Yamasaki et al., 2015). Computational thinking has been described

by Yadav, Good, Voogt, and Fisser (2017) as “decomposing problems, using algorithms

to solve problems, and abstracting and automating the problem-solving approach” (p.

1051).

www.manaraa.com

17

Block-based Programming

In this section, research detailing block-based programming’s functions will be

presented. This section will include descriptions of how users write programs in block-

based programming. Then, the educational advantages of block-based programming

exhibited in the literature will be described.

Writing block-based programs. There are educational versions of programming

languages that offer varying scaffolds to novice programmers while they learn to write

programs (Sáez-López, Román-González, & Vázquez-Cano, 2016; Weintrop, 2016;

Weintrop & Wilensky, 2017). Block-based programming is a subset of programming

languages that are part of the visual programming language family (Weintrop, 2016).

Visual programming differs from more traditional text-based programming because

visual programming allows learners to create programs in a multidimensional

programming environment (Myers, 1990). Weintrop (2016) described block-based

programming languages as those which “leverage a programming-primitive-as-puzzle-

piece metaphor” through on-screen programming environments in which users engage

the language by “dragging blocks into a canvas and snapping them together to form

scripts” in order to write an executable computer program (p. 58). As shown in Figure

2.1, students assemble programs by dragging and dropping pictorial representations of

programming commands in block-based environments (Sáez-López et al., 2016;

Weintrop, 2016; Weintrop & Wilensky, 2017). Such blocks represent text-based

programming staples like Boolean phrases, conditions, loops, and variables, among other

www.manaraa.com

18

Figure 2.1. Differences between text-based and block-based programming languages.

functions (Meerbaum et al., 2013; Weintrop, 2016). Scratch (e.g., Malan & Leitner, 2007;

Meerbaum-Salant et al., 2013; Resnick et al., 2009), and Alice (e.g., Cooper, Dann, &

Pausch, 2000; Kelleher, Pausch, & Kiesler, 2007; Meerbaum-Salant et al., 2013; Werner,

Campe, & Denner, 2012) are two examples of block-based programming environments

which have been widely studied in education and are categorized in a group known as

structured editors (Donzeau-Gouge, Huet, Lang, & Kahn, 1984). Due to the unique

language and editing environment characteristics described above, block-based

programming languages are often used to introduce novices to programming.

Advantages of block-based programming. Different modalities have been

indicated to make learning easier for different learners (Antle, 2007; Manches & Price,

2011; Scaife & Rogers, 2005; Weintrop & Wilensky, 2017). Common text-based

programming languages have been reported to be challenging to learn because of the

specific grammar and syntax requirements for each command (Alkaria & Alhassan, 2017;

Falloon, 2016; Wilson & Moffat, 2010). Block-based programming languages remove

the frustrating syntax and related errors likely to be encountered by novice programmers

because the blocks have the grammar essential to programming languages built-in

(Alkaria & Alhassan, 2017; Weintrop & Wilensky, 2015). With block-based

programming environments, blocks of programming commands can only be connected if

www.manaraa.com

19

the sequences make sense and are functional (Alkaria & Alhassan, 2017; Falloon, 2016;

Kim, Yuan, Vasconcelos, Shin, & Hill, 2018; Weintrop & Wilensky, 2015; Wilson &

Moffat, 2010). Weintrop (2016) succinctly explained that “If two blocks cannot be joined

to form a valid syntactic statement, the environment prevents them from snapping

together, thus preventing syntax errors but retaining the practice of assembling programs”

(p. 59). As blocks cannot be snapped together unless they work as chunks of commands,

novice programmers can modify their program and correct their mistakes before running

the program unsuccessfully.

With text-based programming’s typical obstacles removed, block-based

programming can help learners explore abstract computer science concepts sooner in

their educational progression than learners using text-based programming languages

(Bers, Flannery, Kazakoff, & Sullivan, 2014; Kim et al., 2018; Lye & Koh, 2014). In

text-based programming languages, novices must master the grammar of programming

before moving on to Boolean phrases, loops, variables, and more complex concepts

(Malan & Leitner, 2007; Wilson & Moffat, 2010). Studies have indicated that novices –

both children (Howe, 1981; Levin & Kareev, 1980; Papert, Watt, diSessa, & Weir, 1979;

Pea, 1983) and adults (Bonar & Soloway, 1982) – can be expected to learn to write only

basic text-based programs which are grammatically correct. Although novices of all ages

can be expected to write simple but grammatically correct programs (Bonar & Soloway,

1982; Howe, 1981; Pea, 1983), such programs are basic and do not necessarily represent

comprehension of programming, only knowledge of the grammatical arranging of

commands (Pea & Kurland, 1984). Research has suggested that block-based

programming, on the other hand, is designed to accelerate novice programmers past the

www.manaraa.com

20

time-consuming and often frustrating grammar and syntax of learning text-based

programming languages, allowing them more time to learn and experiment with higher-

order programming concepts (Malan & Leitner, 2007; Wilson & Moffat, 2010). Malan

and Leitner (2007) noted that a block-based programming language should be the first

programming language learned by college-level novice programmers because block-

based programming allows learners “not only to master programmatic constructs before

syntax but also to focus on problems of logic before syntax” (p. 1). Instead of focusing on

the minutia of text-based programming grammar and syntax, learners of block-based

programming can focus on more complex thinking skills – like problem-solving – earlier,

therefore creating more functionally full-bodied programs (Malan & Leitner, 2007;

Wilson & Moffat, 2010). For these reasons, block-based programming has numerous

instructional advantages over text-based programming languages when teaching novices.

Programming in Education

This section provides the underpinnings for why programming is the central

construct in this study. Then, a brief overview of research on programming in K-12

education will be shared in order to provide the context for how programming appears in

schools and why teachers are being prepared to integrate it into their instruction. Finally,

how block-based programming is being used in undergraduate and teacher education will

be presented to explain how teachers are experiencing block-based programming.

Programming in K-12 education. The genesis of programming in K-12

education dates back to Papert’s programming language, Logo, with which students

programmed an on-screen turtle to draw shapes (Abelson & DiSessa, 1986; Feurzeig,

Papert, Bloom, Grant, & Soloman, 1969; Resnick, 2007; Resnick, Ocko, & Papert, 1988).

www.manaraa.com

21

Logo’s approach to programming sparked the development of block-based programming

languages such as Scratch and Alice that are commonly used today (Falloon, 2016;

Mikropoulos & Bellou, 2013; Resnick, 2007; Weintrop, 2016). Due to its success as a

teaching tool, block-based programming is widely being introduced in elementary and

middle school classes (Werner et al., 2012; Resnick et al., 2009).

Research has shown block-based programming to have positive effects on the

core subjects (Burke, 2012; Fessakis et al., 2013; Moreno-Leon & Robles, 2015; Sáez-

López et al., 2016; Sengupta et al., 2013). In science classrooms, research has shown

significant gains in student understanding of kinematics and ecology (Sengupta et al.,

2013) and the development of enthusiasm and commitment to computer science in sixth

grade (Sáez-López et al., 2016). Research into block-based programming’s effect on

math skills indicated that students developed their problem-solving and mathematical

understanding (Fessakis et al., 2013). Moreno-Leon and Robles (2015) even contended

that a math class is the best fit for programming instruction among the general subject

areas. In English, block-based programming has been used to teach literacy through

digital storytelling (Burke, 2012), and research indicated that there are motivational

effects of integrating programming into English instruction (Sáez-López et al., 2016).

Such findings undergird principals’ and superintendents’ views that computer science

should be integrated into the core subjects (Google Inc. & Gallup Inc., 2016).

Programing in post-secondary education. Block-based programming is being

used not only to introduce young novices to programming, but adult learners as well

(Alkaria & Alhassan, 2017; Malan & Leitner, 2007; Wilson & Moffat, 2010). According

to a study by Malan and Leitner (2007), block-based programming has been used to

www.manaraa.com

22

introduce computer science class students at Harvard to programming. In this study,

block-based programming instruction motivated Harvard students to learn to program and

familiarized them with important computer science concepts that would transfer over to

Java, a more grammar and syntax-heavy text-based programming language. Similarly,

studies specific to in-service teachers (Alkaria & Alhassan, 2017; Wilson & Moffat,

2010) indicated that participants’ attitudes toward teaching computer science concepts

increased as a result of block-based programming professional development.

Furthermore, preservice teachers’ attitudes and motivation to integrate computer science

concepts into their teaching improved as a result of block-based programming instruction

(Yadav, Zhou, Hambrusch, & Korb, 2014; Yadav, Zhou, Mayfield, Hambrusch, & Korb,

2011). These studies represent the crux of educational research on adult learners being

introduced to programming through block-based languages.

Teachers’ Difficulties in Learning Programming

Various researchers have pointed out that studies on programming in education

historically have heavily focused upon students, not teachers (Barr & Stephenson, 2011;

Grover & Pea, 2013; Yadav et al., 2011). Other researchers have critiqued the small

amount of literature on programming relating to comprehensively examining the

difficulties experienced by preservice or in-service teachers while learning programming

(Bower et al., 2017; Yadav et al., 2011). Most recently, Kucuk and Sisman (2018)

emphasized that there continues to be a limited effort by researchers to study the

experiences of preservice teachers learning to program. With the reality of the current

state of the available literature related to preservice teachers’ difficulties learning to

program in mind, research on in-service teachers – the population preservice teachers will

www.manaraa.com

23

become upon entering the workforce – will be presented along with the small amount of

research on the difficulties experienced by preservice teachers. Through this method, a

comprehensive explanation of the literature available on in-service teachers, in addition

to preservice teachers, will paint a more informed picture of difficulties these linked

populations face while learning to program.

In-service teachers’ challenges. Research has shown that in-service teachers can

experience difficulties as technology advances and computer concepts become a more

substantial part of the K-12 curriculum (Bower et al., 2017; Grover & Pea, 2013; Israel et

al., 2015; Resnick et al., 2009). First, research suggests that teachers have difficulties

adapting their teaching to teach computer concepts because they are not comfortable

using and developing lessons around new technologies (Curzon et al., 2009; Meerbaum-

Salant et al; Schanzer, 2015). Exacerbating this problem, teachers have misconceptions

about computer science, which repel them from learning and then teaching computer

science concepts like programming in classrooms (Bower et al., 2017; Milton, Rohl, &

House, 2007). Teachers lack confidence in teaching computer science topics because they

are often not computer science majors and therefore do not feel credentialed enough to

teach the subject in their classrooms (Bender, Schaper, Caspersen, Margaritis, &

Hubwieser, 2016; Israel et al., 2015). In fact, Bower et al. (2017) reported that 78% of

teacher participants (N = 69) had a low level of self-confidence about teaching

computational thinking in their classrooms after taking part in full-day learning activities

on basic computer science topics such as dissecting problems, recognizing patterns,

abstraction, and algorithms. Most significantly, teachers report a lack of confidence

teaching computer science content due to their views of the perceived level of difficulty

www.manaraa.com

24

and abstractness attributed to the subject (Bower et al., 2017; Grover & Pea, 2013; Israel

et al., 2015; Resnick et al., 2009). These are all reasons in-service teachers have

difficulties with learning programming, which can inhibit them from integrating

programming into their instruction.

Preservice teachers’ challenges. There is emerging research on preservice

teachers being trained to use programming in teacher preparation classes. For example,

research reported that preservice teachers experienced issues with programming concepts

like identifying variables, defining conditions, and identifying errors (Kim et al., 2015,

2018). A study by Ortiz et al. (2015) noted that 12% of preservice teacher participants did

not feel prepared to integrate this type of instruction into their teaching after going

through training. This population of preservice teachers echoed the sense of feeling

intimidated by the abstract math concepts required to teach programming (Ortiz et al.,

2015). These studies imply that preservice teachers, like in-service teachers, experience

difficulties with programming concepts.

Educational Robotics

Educational robotics are an important tool in programming education. This

section will overview educational robotics, a main construct in the research questions of

this dissertation. This section is broken into four parts. First, how studies characterize key

educational robotics terms will be explained. Next, how educational robotics are used and

how educational robotics relate to block-based programming will be described. Then,

theoretical frameworks for educational robotics practices that are found in the literature

will then be shared. To conclude, difficulties experienced by teachers using educational

www.manaraa.com

25

robotics will be disclosed. The four elements in this section are designed to provide

readers with a summary of literature on educational robotics in education.

Defining Educational Robotics

Educational robotics was defined by Eguchi (2012) broadly as ‘‘the use of

robotics as a learning tool’’ (p. 3). Ortiz et al. (2015) provided a more specific definition

of educational robotics, or “a specific application of K–12 engineering education and

offers students physical manipulatives that are familiar and easy to work with as they

participate in the engineering design process” (p. 43). Catlin (2012) characterized

educational robotics practices as instructional strategies that use robotics for instructional

purposes. These examples provide a general characterization of educational robotics.

Educational Robotics for Teaching and Learning

Having a frame of reference for how educational robotics have been used for

teaching and learning is essential background information for understanding educational

robotics practices. This section has two focuses. This section will describe (1) how block-

based programming and educational robotics are combined, and (2) the advantages of

implementing educational robotics practices for programming education that are found in

the literature.

Pairing programming with educational robotics. The genesis of educational

robotics started with Papert’s Logo programming language (Alimisis et al., 2007; Casler-

Failing, 2017). Logo’s turtle concept inspired Perlman’s (1974) TORTIS programming,

which, for the first time, included educational manipulatives that could be programmed.

Resnick et al. (1988) later paired Lego gears, motors, and sensors with a computer

running the Logo programming software. Today, there are numerous types of educational

www.manaraa.com

26

robotics kits available to educators, many which pair robotics pieces with block-based

programming environments like Lego Mindstorms robots and Lego EV3-G programming

language, or mBlock robots and Scratch programming language (Dodds et al., 2006;

Gunbatar & Karalar, 2018; Weintrop, 2016). With the growing popularity of

programming initiatives in schools, the use of educational robotics as a programming

vessel is becoming widespread in education (Dodds et al., 2006; Rogers, Wendell, &

Foster, 2010).

Students or instructors can build educational robots to accomplish specific tasks.

For example, sensors or lifting devices may be built onto the chassis of the manipulative

in order to navigate through an obstacle course and pick up an object (Bers et al., 2002;

Martin et al., 2011; McNally, Goldweber, Fagin, & Klassner, 2006). Educational robots

can run based on commands written in block-based programming languages (Alimisis et

al., 2007; Petre & Price, 2004). Programming for the educational robotics can be

composed on computers or mobile devices in a block-based programming environment

and uploaded to the controller unit of each robot either wirelessly by Bluetooth or

physically by USB connection (McGill, 2012; Petre & Price, 2004).

Dagdilelis, Sartatzemi, and Kagani (2005) and Staszowski and Bers (2005)

offered similar outlines for pairing block-based programming with educational robotics

activities in the classroom. Since both block-based programming and educational robots

can be constructed, deconstructed, and modified, students can design both their robots

and the programs running on the robots to accomplish different tasks (Dagdileliset al.;

2005; Staszowski & Bers, 2005). Dagdilelis et al. (2005) outlined a more technical and

action-oriented structure of (1) constructing a robot, (2) writing a program using a visual

www.manaraa.com

27

programming language, (3) transmitting that program to the educational robot, and (4)

running the program. Dagdilelis et al. (2005) noted that steps two and four are often

repeated many times as students solve problems and modify their educational robotics

designs and programs. Staszowski and Bers’ (2005) listed five major occurrences that

happen while students are engaged in activities that combine programming and

educational robotics: (1) design, (2) building, (3) building concepts, (4) programming, (5)

programming concepts. These occurrences take more of a big picture view of the process

and note mental exercises of building concepts and programming concepts. Dagdilelis et

al. (2005) and Staszowski and Bers (2005) include the commonalities of building a robot

to perform a certain task and then programming a robot to execute the required

commands.

Advantages of educational robotics. There are numerous benefits of educational

robotics, which have been noted in the literature. For example, Huang, Yang, and Cheng

(2013) studied the impact of using educational robotics on programming achievement.

Their findings indicated that students who learned programming through educational

robotics demonstrated higher programming achievement than those who learned

programming through flowcharts. Educational robotics can be considered as

manipulatives for learning to program in the style of Montessori (Brosterman, 1997).

While Montessorian manipulatives were designed to help students better understand

numbers, educational robotics help students understand abstract science, math, and

computer science lesson content (Bers, 2010; Bers et al., 2002; Bers & Portsmore, 2005;

Brosterman, 1997). For example, educational robotics enhance the traditional

programming learning experience by breaking down the barrier between the computer

www.manaraa.com

28

screen where block-based programs live and the real, physical world where these

intangible programs can be acted out physically (Mikropoulos & Bellou, 2013). Real-

world application allows students to make connections between the content being studied

and how the content is used outside of the classroom (Adams, Miller, Saul, & Pegg,

2014). Since educational robotics can be used to reduce the level of abstractness of

science and mathematics concepts (Nugent, Barker, Grandgenett, & Adamchuk, 2010),

educational robotics has been demonstrated to be effective in the teaching of STEM

concepts (Altin & Pedaste, 2013; Barker, Nugent, & Grandgenett, 2014). Students can

actively learn in a student-centered approach by physically interacting with gears, motors,

and sensors, among other aspects, through the construction of their own robots (Bers,

2008; Wang & Ching, 2003). As synthesized in Table 2.1, fine motor skills, STEM

knowledge, physics knowledge, mathematics skills, and programming understanding

have improved in participants as outcomes of educational robotics practices in the

classroom. Successful outcomes relating to the use of educational robotics like those

highlighted in this paragraph have led to educational robotics’ emerging popularity in

schools and the field of education.

Table 2.1. Significant Educational Robotics Findings in K-12 Education

Study Population Significant Findings

Bers et al. (2014)

Kindergarten Participants were interested and could learn many

of the robotics and programming concepts in the

curriculum.

Educational robotics develop students’ fine motor

skills.

Lindh &

Holgersson (2007)

Elementary

and middle

school

Educational robotics improved elementary and

middle school students’ math performance and

STEM knowledge.

www.manaraa.com

29

Table 2.1. Significant Educational Robotics Findings in K-12 Education Continued.

Study Population Significant Findings

Mikropoulos &

Bellou (2013)

Elementary

and middle

school

Educational robotics can be used to aid students

in developing physics knowledge through

constructionist robotics activities.

Karahoca,

Karahoca, &

Uzunboylub,

(2011)

Elementary

and middle

school

Improvement demonstrated in students’ self-

confidence and mathematics learning.

Casler-Failing

(2017)

Middle

school

Educational robotics increased student

engagement and aided in the learning of ratios

and proportional reasoning skills.

Castledine &

Chalmers (2011)

Middle

school

Educational robotics helped students reflect on

problem-solving and allowed students to exercise

higher-order thinking skills.

Dagdilelis et al.

(2005)

High school The correct usage of basic programming concepts

was better understood with the use of educational

robotics.

Theoretical Frameworks for Educational Robotics Practices

Educational robotics practices utilize robots as mindtools (Jonassen, 2000) and

adhere to the principles of constructivism and constructionism (Alimisis, 2013; Kucuk &

Sisman, 2018). In fact, Mikropoulos and Bellou (2013) reported in their research that

most educational robotics studies followed a mixed constructivist-constructionist

theoretical framework. This section covers three aspects common to educational robotics

theoretical frameworks found in the literature. These common aspects are (1) the use of

robots as mindtools to aid student learning, and the utilization of mindtools within (2)

constructivist theoretical frameworks, and (3) constructionist theoretical frameworks.

Constructivism. Educational robotics practices for programming align with

Piaget’s (1967, 1973) theory of constructivism (Harel & Papert, 1991; Mikropoulos &

www.manaraa.com

30

Bellou, 2013; Petre & Price, 2004). According to Piaget (1967, 1973), constructivism is

the building of abstract knowledge structures in one’s mind through concrete experiences.

Some researchers even suggest that educational robotics represent one of the most

effective examples of the application of constructivist theory (Kaya, Newley, Deniz,

Yesilyurt, & Newley, 2015; Papert, 1993).

In the constructivist view of learning, the mental creation of knowledge

necessitates the use of hands-on activities (Alimisis, 2013; Piaget, 1973; Ucgul, 2013).

As the manipulative is used to create concrete representations during the creation of

abstract mental models, educational robotics fit within the constructivist framework

(Mikropoulos & Bellou, 2013). Furthermore, Petre and Price (2004) emphasized, “In

robotics, students’ learning is concrete, associated with phenomena they create, observe

and interact with,” and it is through the physical manipulatives that “the abstractions they

derive (or apply later) are grounded and relevant,” (p. 148). With their ability to be used

as physical manipulatives which can illuminate abstract concepts, educational robotics

can be used as a constructivist mindtool for learning.

Constructionism. Both a learning theory and educational strategy,

constructionism builds on Piaget’s (1967) theory of constructivism by emphasizing the

construction of hands-on products. Born from Papert’s (1980) constructionist framework,

the term constructionism was explained by Kafai and Resnick (1996) as “two types of

intertwined construction” wherein “a designer comes to understand not only objective

constraints but also subjective meaning” (p. 2). The first type of construction is physical

and occurs when students construct their own learning artifacts through hands-on

activities (Papert, 1980; Papert, 1993). The meaning-construction described by Kafai and

www.manaraa.com

31

Resnick (1996) is the second type of entwined construction. On a mental level,

constructionism, like constructivism, theorizes that learning is not as simple as the

instructor transferring knowledge to the student (Papert, 1980, 1993). Rather, learning

occurs when students construct, deconstruct, and reconstruct understanding in their minds

based on their learning experiences aided by physical construction (Kafai & Resnick,

1996; Mikropoulous & Bellou, 2013; Papert, 1993; Resnick & Silverman, 2005). As

students construct their learning artifacts, they learn by continually creating and updating

knowledge in their minds.

A key difference between constructionism and constructivism is that more

emphasis is placed on students constructing learning artifacts through hands-on activities

in constructionism (Kafai & Resnick, 1996; Papert, 1993). Kafai and Resnick (1996)

argued that the difference between constructivism and constructionism is that

“Constructionist theory goes beyond Piaget’s constructivism in its emphasis on artifacts,

asserting that meaning-construction happens particularly well when learners are engaged

in building external and sharable artifacts” (p. 2). The learning artifacts in

constructionism that are created by students “are subject to the test of reality; if they

don’t work, they are a challenge to understand why and to overcome the obstacles,”

Papert (1999, p. XIII) stressed. Therefore, constructivism is the idea that knowledge is

built in one’s brain, while constructionism is more situated and pragmatic with the idea

that knowledge is built through constructing tangible learning artifacts outside of the

brain (Papert, 1990).

Due to the buildable nature of many educational robotics kits and the block-based

programs, they are often operated with, constructionism is heavily associated with the

www.manaraa.com

32

combination of educational robotics and block-based programming. The utilization of

constructionism in educational robotics theoretical frameworks is fitting, as Kafai and

Resnick (1996) have affirmed, because “Constructionist theory suggests a strong

connection between design and learning” as it “asserts that activities involving making,

building, or programming – in short, designing – provide a rich context for learning” (p.

2). Chambers and Carbonaro (2003) asserted that “mindtools, in the form of robotics,

represents a constructionist approach to using technology” by aiding students in

“representing knowledge, manipulating virtual and concrete objects, and reflecting on

what they have designed and built” (p. 212). While constructionism has been used in the

theoretical frameworks for studies on the use of educational robotics with preservice

teachers (Hadjiachilleos, Avraamidou, & Papastavrou, 2013; Kabatova & Pekarova,

2010), more numerous studies have focused the early childhood, elementary, and middle

levels (Bers, 2010; Erwin, Cyr, & Rogers, 2000; Meerbaum-Salant et a;., 2013; Papert,

1993). The construction of the physical manipulatives and the programming of

commands in educational robotics activities align with the constructionist learning

theory, which postulates that depth of learning is tied in large part to the physical

construction of learning artifacts.

Learning through collaboration within a community of learners is a pillar of

constructionist theory (Papert, 1980; Huang et al., 2013). Accordingly, the collaboration

of students in small groups for building and programming educational robotics is a core

part of numerous studies’ instructional frameworks (Bakke, 2013; Bers & Portsmore,

2005; Castledine & Chalmers, 2011; Chambers & Carbonaro, 2003; Kabatova &

Pekarova, 2010; Mikropoulos & Bellou, 2013). Backing this aspect of constructionist

www.manaraa.com

33

frameworks, researchers have identified that using educational robotics in conjunction

with collaboration leads to positive results (Denis & Hubert, 2001; Huang et al., 2013;

Wang, 2001). For example, Denis and Hubert (2001) and Eguchi (2007, 2013) found that

constructionist robotics activities developed participants’ collaboration skills. Eguchi

(2013) noted that 100% of students (N = 18) reported learning teamwork skills through

the collaborative element of the constructionist robotics activities used by the researchers.

Participants have also found the collaborative component of constructionist robotics

activities to be beneficial for brainstorming and receiving feedback on programming

ideas (Petre & Price, 2004; Sisman & Kucuk, 2019). Constructionist frameworks for

robotics activities have garnered positive results by encouraging teamwork and the

modification of participants’ understanding through the processes of feedback and

reflection between participants, their peers, and their instructors (Denis & Hubert, 2001;

Eguchi, 2013; Petre & Price, 2004; Sisman & Kucuk, 2019).

Backing the spectrum of constructivist-constructionist educational robotics

frameworks described in the above two sections is the use of educational robotics as

mindtools. Jonassen (2000) popularized the term mindtools to describe computer-enabled

tools that can be built or modified that aid in the facilitation of higher-order thinking

skills. Students use the robots as aids to think with – helping them create mental models –

and not from (Bers et al., 2002; Chambers & Carbonaro, 2003; Mikropoulos & Bellou,

2013; Smith, 2013). The robots themselves are not what is being studied when mindtools

are utilized – although a better understanding of the nuts and bolts of the robots may be

an additional value – because the focus is on the use of the manipulatives to illustrate the

abstract concepts often in the realms of science and math (Bers et al., 2002). Mikropoulos

www.manaraa.com

34

and Bellou (2013) explained five reasons why educational robotics are commonly used as

mindtools. These reasons included (1) the construction of knowledge through project-

based assignments which utilize real-world models, (2) providing a safe avenue for

failure and discovery in a real-world environment, (3) allowing for learning through the

scientific method, (4) allowing students to partake in manipulatives-based reflection, and

(5) learning through collaboration and feedback in a community of learners (Mikropoulos

& Bellou, 2013). To this end, Mikropoulos and Bellou (2013) reported that mindtools

have a functional duty within both constructivist and constructionist frameworks.

Teachers’ Difficulties of Integrating Educational Robotics into Education

There are several barriers, limitations, and difficulties users experience while

learning with educational robotics (Bruciati, 2004; Kim et al., 2018; Kucuk & Sisman,

2018; Major, Kyriacou, & Brereton, 2014; McNally et al., 2006). These issues can be

grouped into three categories: (1) financial barriers, (2) physical limitations, and (3)

mental difficulties. The following paragraphs in this section will outline the financial,

physical, and mental difficulties that have been described in the literature relating to

educational robotics.

Financial barriers. Costs associated with purchasing, maintaining, and even

storing educational robotics may make the manipulatives an unjustifiable tool for

teaching programming in some contexts (Greenley & Tidwell, 2002; Major et al., 2014).

If obtaining robots for each student is unattainable in a school’s budget, this can lead to

students working in groups (Smith, 2013). Although the benefits of a group dynamic for

educational robotics frameworks have been outlined above, a study by Kucuk and Sisman

(2018) highlighted that preservice teachers expressed difficulties adapting to the group

www.manaraa.com

35

structure of educational robotics activities. Moreover, the cost inherent to educational

robotics may discourage institutions from letting students take the manipulatives outside

of the classroom (Major et al., 2014; McNally et al., 2006). If institutions have enough

computers or mobile devices for their students, classes can perform similar programming

exercises without the additional cost of educational robotics kits by using online

simulators (Major et al., 2014; McNally et al., 2006). For these various reasons,

educational robotics have inherent financial barriers.

Physical limitations. As they are not directly necessary for programming

education, educational robotics can create distractions for students and teachers (Major et

al., 2014; McNally et al., 2006). Mechanical failure is one added issue when integrating

educational robotics into programming education, which may impact both teachers and

students (Major et al., 2014). For teachers, instructional time and preparation time can be

lost to constructing the robots and setting up obstacle courses for students to program the

robots through (Major et al., 2014). In addition, Kucuk and Sisman (2018) noted that

their preservice teacher participants experienced difficulties with the physical aspects of

the educational robotics activities, including problems with understanding the design

steps, as well as losing interest in designing the robots. Preservice teachers also

experienced difficulties connecting motors and sensors to ports and arranging the proper

blocks of programming (Kucuk & Sisman, 2018). Similar data were gathered in a study

by Sisman and Kucuk (2019) in which preservice teachers experienced difficulties with

connecting the correct sensors to ports and assembling the educational robots because of

the small parts. Substantiating Kucuk and Sisman’s (2018) and Sisman and Kucuk’s

(2019) findings, a study by McGill (2012) with a population of non-computer science

www.manaraa.com

36

majors learning programming reported participants’ frustration with the physical aspects

of robots, including parts, sensors, and connectivity issues. As noted by these studies, the

physical aspect of educational robotics can cause difficulties for some learners.

Mental difficulties. Educational robotics may lead to mental difficulties for some

learners (Bruciati, 2004; Kim et al., 2018; Kucuk & Sisman, 2018). Notably, some of the

preservice teachers in Kucuk and Sisman’s (2018) study continued to report issues

understanding complex programming processes. Another problem that has been observed

in preservice teacher educational robotics studies deals with debugging (Kim et al.,

2018). This research showed that during activities that combined block-based

programming and educational robotics, many preservice teachers feared being

embarrassed by writing code that would not run properly on the robots (Kim et al., 2018).

Consequently, preservice teachers erred on the side of caution and wrote more basic

programs (Kim et al., 2018). Sisman and Kucuk (2019) reported similar findings in which

preservice teachers felt debugging was a time-consuming and often frustrating process. In

addition, researchers (Bruciati, 2004; Kucuk & Sisman, 2018) caution that intrinsic

cognitive load may be increased by adding educational robotics to programming

exercises. As noted by these researchers, the added mental impacts of educational

robotics can cause difficulties for some learners.

Impact of Educational Robotics on Programming Comprehension

There is a need to prepare preservice teachers to integrate STEM learning into

their future instruction (Kim et al., 2017). This section will begin by defining

programming comprehension. Then, cognitive learning theories will be explained. After

that, programming comprehension frameworks will be detailed. Next, a synthesis on the

www.manaraa.com

37

topic of programming comprehension and teachers will be shared. To finish, an overview

of the different ways programming comprehension has been measured relating to this

study’s population will be examined.

Defining Programming Comprehension

Comprehension can be demonstrated by students by comparing, interpreting,

describing, or organizing (Bloom, Engelhart, Furst, Hill, & Krathwohl, 1956).

Programming comprehension has been described by Ramalingam and Wiedenbeck

(1997) as “the process of understanding a program written by oneself or someone else,

normally for the purpose of doing some further task with the program which requires

understanding” (p. 125). Ala-Mutka (2004) described programming comprehension as

the “ability to track code to build a mental model of the program and predict its behavior”

(p. 5). Programming comprehension, Ramalingam and Widenbeck (1997) have asserted,

consists of the skills people use to collaborate, modify and streamline programs as “most

programming does not involve writing a program from scratch but instead starts from the

basis of existing programs” (p. 125).

Cognitive Learning Theories

Learning theories help researchers explain the mental processes of how people

learn (Harasim, 2012). Cognitive learning theories are the basis of cognitive models that

explain how information is obtained from the learner’s environment and then processed

into comprehension and long-term knowledge (Kalyuga, 2010; Sweller, 1994). This

section will overview germane theories related to programming comprehension: schema

theory and information processing.

www.manaraa.com

38

Schema theory. To begin, schema theory explains how learners create models in

their minds using an interconnected network of nodes organized through relationships

among similar concepts (Johnson-Laird, 1983). Kalyuga (2010) explained schema as the

relationships, categories, patterns, and overall meaning the mind ascribes to different

information. Multiple schemas can be used in conjunction with each other in a

hierarchical structure (Kalyuga, 2010). Short-term, or working memory, temporarily

stores the information that is currently being used by the processor, is limited to a small

number of ideas, and is responsible for the coordination of information and thinking

(Atkinson & Shiffrin, 1968; Baddeley, 1992; Miller, 1956). Long-term memory is larger

in capacity and contains all the knowledge a learner can call upon in order to give context

to or understand a new idea (Klatzky, 1980; Smith, Shoben, & Rips, 1974). In Klatzky’s

(1980) Network Model of Long-term Memory, long-term memories are likened to a

mental dictionary with concepts filed by association while different nodes house

conceptual associations and work in concert to form memories. The feature comparison

model of long-term memory (Smith et al., 1974) differs from Klatzky’s (1980) network

model. In the feature comparison model, defining characteristics are compared in

memory recall (Smith et al., 1974). The propositional models of long-term memory

(Norman & Rumelhart, 1975) mix aspects of the previously described models in which

nodes take stored basic background information and combine that input with a

proposition using a subject and a predicate. The parallel distributed processing models of

long-term memory (McClelland, 2011), Driscoll (2005) explained, differs in that

“multiple cognitive operations occur simultaneously as opposed to sequentially” (p. 95).

Schema are often organized by semantic concepts (Navarro-Prieto & Canas, 2001;

www.manaraa.com

39

Ormerold, 1990), and larger concepts can be combined, called chunks. Chunks contain

large amounts of associated information that are interconnected through concepts and

extensions (Sweller, 1994). Then, the chunks of automatic processing interact to create

new schemas as new material is learned (Sweller, 1994). Schema theory helps explain

how people handle and comprehend information.

Information processing models. The information processing model, or IPM, is a

theory which explains how learners process information (Newell & Simon, 1972). In the

IPM, learners are like computers – or more fitting with this study, robots using sensors –

and obtain information through their receptors, like the eyes and ears (Newell & Simon,

1972). The information that is obtained by the receptors is then sent to the processor,

whose function it is to understand the information (Newell & Simon, 1972). Similar

information is stored within a learner’s memory using different silos, or nodes (Newell &

Simon, 1972). Nodes are arranged starting with the name of the concept and extend into

the nature of the concepts associated with that name (Kristensen & Osterbye, 1994).

From there, nodes are further associated by intention, or the facets the concepts have in

common.

Similarly, Atkinson and Shiffrin’s (1968) Multi Store Model of Memory has

many overlapping ideas about the comprehension of knowledge as Newell and Simon’s

(1972) IPM. In the Multi Store Model of Memory, information is obtained from the

environment through the senses like a computer, and it is then processed in a linear

fashion (Atkinson & Shiffrin, 1968). Driscoll (2005) explained that Atkinson and

Shiffrin’s (1968) model utilizes the structure of a “multistore, multistage theory of

memory,” (p. 74-75) where information is absorbed through the receptors and then flows

www.manaraa.com

40

through a metamorphosis from each state of sensory, working, and then long-term

memory. In the Multi Store Model of Memory, information is encoded visually, by

sound, or by meaning (Atikinson & Shiffrin, 1968).

Programming Knowledge Frameworks

Programming comprehension can be explained through learning theory. In this

section, the types of programming knowledge that researchers have identified learners

use when writing programs are discussed. Then, frameworks that explain how learners

come to comprehend programming will be detailed.

Syntactic, semantic, and strategic knowledge. Types of programming

knowledge can be divided into three different categories: syntactic, semantic, and

strategic (Bucks, 2010; Mayer, 1979; McGill & Volet, 1997). Syntactic programming

knowledge includes the vocabulary, grammar, and organizational rules used in a specific

programming language (Mayer, 1979). Syntactic programming knowledge is unique to

each programming language in much the same way English and Spanish have different

rules about vocabulary, grammar, and syntax (Bucks, 2010). Semantic, described by

Bucks (2010) as conceptual programming knowledge, on the other hand, includes

programming ideas or functions which are transferrable between programming languages

(Soloway & Ehrlich, 1984). Both syntactic and semantic knowledge contribute to

strategic knowledge when creating or understanding a program in a certain context and

aid in one’s ability to problem-solve in programming (Bucks, 2010). Strategic knowledge

pertains to the problem-solving skills used to complete a programming problem (McGill

& Volet, 1997). The three categories of programming knowledge include syntactic,

semantic, and strategic knowledge and contribute to programming comprehension.

www.manaraa.com

41

Frameworks of programming comprehension. There are multiple frameworks

to explain how programming is comprehended. Two prominent frameworks are those of

Mayer (1981) and Pennington (1986). These frameworks will be explored in this section.

Mayer’s model. Mayer (1981) used the IPM (Newell & Simon, 1972) to explain

programming comprehension. In the IPM, the cognitive processes which take place in the

mind are represented by a computer (Newell & Simon, 1972). In Mayer’s (1981) model,

the learner experiences the new information and processes it using short-term memory.

While new information is being processed in the short-term memory, links are searched

for within the long-term memory in order to give context and a previous understanding of

the information (Mayer, 1981). The connected long-term memories are brought into the

short-term memory, and then the mind updates the existing mental model relevant to the

concept or adds the new information (Mayer, 1981). Bayman and Mayer (1983)

investigated this model and found that most participants had an incomplete understanding

of programs they were tested on at the conclusion of an introductory programming

course. The researchers determined that the novice programmers needed concrete models

of the programs in order to develop the necessary mental models for comprehension

(Bayman & Mayer, 1983).

Pennington’s model. Pennington’s (1986) framework of programming

comprehension expands upon classic language comprehension frameworks by borrowing

the idea of layered mental representations. Surface form representation, textbase

representation, and situational modeling are all aspects Pennington (1986) borrows from

traditional text comprehension models. Surface form representation is the first layer,

which consists of a word for word recall of the text (Ramalingam & Wiedenbeck, 1997).

www.manaraa.com

42

Next is the textbase representation, which includes abstractions from surface form

representation (Pennington, 1986). Finally, there is the situation model in which the

reader adds context to the text based on the reader’s previous knowledge or experiences

with the content which the text describes (Pennington, 1986; Ramalingam &

Wiedenbeck, 1997).

Pennington’s (1986) programming comprehension framework divides into five

levels: program, domain, operations, function, and state. The traditional concept of

textbase representation aligns with Pennington’s (1986) program model while the

traditional situation model aligns with Pennington’s (1986) domain model (Ramalingam

& Wiedenbeck, 1997). The program model includes operations knowledge –

understanding of basic pieces of programming – and flow control knowledge or

understanding of loops or if/then statements (Ramalingam & Wiedenbeck, 1996). The

domain model includes variables and the changing of data (Pennington, 1986).

Operations knowledge includes basic operations in a single line of programming,

function knowledge includes knowledge of the outcome of the program, while state

knowledge consists of understanding how all the pieces of the program work together

(Pennington, 1986; Ramalingam & Wiedenbeck, 1997).

Two studies utilized Pennington’s (1986) framework. In the first study,

professional programmers reviewed short programs within their programming language

expertise (Pennington, 1986). Then, participants underwent a memory test based on

program, domain, operation, functions, and state elements, and results showed that

operations knowledge was well represented while domain knowledge was poorly

represented (Pennington, 1986). In a second study, professional programmers were given

www.manaraa.com

43

a longer program and then underwent a memory test based on program, domain,

operation, functions, and state (Pennington, 1987). Next, the participants modified the

program and answered new questions. Although the results of the first phase included

errors in domain knowledge, the results of the second phase of the study had the highest

scores on the domain knowledge (Pennington, 1987). Pennington (1987) interpreted these

results as showing that program and domain knowledge are different and that

comprehension-based activities likely increase domain knowledge.

Programming Comprehension and Educational Robotics

This section is divided into two focuses. First, educational robotics studies that

have assessed programming comprehension among in-service and preservice teachers

will be shared. Then, the ways in which programming comprehension of preservice

teachers has been measured will be detailed.

Educational robotics’ impact on teachers’ programming comprehension.

Research in the areas of preservice and in-service teachers’ comprehension of

programming and robotics is emerging (Eguchi, 2013; Jaipal-Jamani & Angeli, 2017;

Kay, Moss, Engelman & McKlin, 2014; Kim et al., 2018; Kucuk & Sisman, 2018; Perritt,

2010; Sullivan & Moriarty, 2009). These studies evaluate different aspects of

programming comprehension through educational robotics. Since there are so few studies

in the area of teachers’ programming comprehension and robotics, each of the following

paragraphs will be dedicated to detailing either a study of in-service teachers’ or

preservice teachers’ programming comprehension.

In-service teachers. Through professional development sessions, the effects of

educational robotics on in-service teachers’ programming comprehension have been

www.manaraa.com

44

studied (Kay et al., 2014; Sullivan & Moriarty, 2009). These studies provided as-needed

robotics professional development to train teachers in computer science concepts (Kay et

al., 2014; Sullivan & Moriarty, 2009). The following paragraphs will synthesize these

studies.

Kay et al. (2014) evaluated educational robotics’ effects on programming

comprehension among in-service K-12 teachers with no prior programming experience

(N = 41). Over the course of three days of Lego robotics programming workshops,

participants learned how to write basic programs for the robots and the skills necessary to

start their own robotics clubs (Kay et al., 2014). Results indicated a statistically

significant increase in programming knowledge and skills, with 90% of participants

reporting that they felt they were competent or skilled in programming (Kay et al., 2014).

The researchers stated that these results suggested that programming understanding

among in-service teachers increased with the use of educational robotics (Kay et al.,

2014).

Sullivan and Moriarty (2009) evaluated the robotics and programming knowledge

of 20 in-service middle and high school teachers. The in-service teachers participated in

professional development workshops at a robotics fair and were assessed with a

pretest/posttest robotics and programming content knowledge instrument as well as a

self-assessment survey (Sullivan & Moriarty, 2009). Results indicated statistically

significant differences between the pretest and posttest, with all participants reaching a

general knowledge of all assessment concepts (Sullivan & Moriarty, 2009). The self-

assessment data indicated that the participants’ content knowledge related to robotics and

www.manaraa.com

45

programming increased significantly because of the workshops (Sullivan & Moriarty,

2009).

Preservice teachers. Researchers have begun to study preservice teachers’

comprehension of programming in different contexts (Eguchi, 2013; Jaipal-Jamani &

Angeli, 2017; Kim et al., 2018; Kucuk & Sisman, 2018). Numerous researchers point out

that robotics instruction is becoming more common in preservice teacher preparation

around the world (Bruder & Wedeward, 2003; Hadjiachilleos et al., 2013; Kay et al.,

2014; Kaya et al., 2015; Kim et al., 2015; Majherová & Králík, 2017; Sullivan &

Moriarty, 2009). However, there is limited research on using educational robotics for

training preservice teachers in teacher preparation courses (Kucuk & Sisman, 2018;

Jaipal-Jamani & Angeli, 2017). Few researchers have studied programming

comprehension of preservice teachers through the lens of educational robotics activities

(Eguchi, 2013; Jaipal-Jamani & Angeli, 2017; Kim et al., 2018). Each of these studies

will be detailed in the following paragraphs.

Eguchi (2013) studied 18 preservice teachers participating in an educational

robotics course. Participants worked in groups sharing one robot and one computer

(Eguchi, 2013). Participants were evaluated through observations (Eguchi, 2013). For the

observations, participants were evaluated while teaching groups of classmates how to

program their robots through difficult programming tasks (Eguchi, 2013). Each group

was successful in teaching the other groups during the observations (Eguchi, 2013).

Eguchi (2013) contended that teaching “indicates their mastery of the programming skills

required in class since teaching is the highest form of learning” (p. 9).

www.manaraa.com

46

Jaipal-Jamani and Angeli (2017) evaluated 21 elementary preservice teachers’

understanding of science and computational thinking concepts as a result of robotics

activities in a science teaching methods course. The robotics activities accounted for six

hours of contact time in which participants learned about algorithms, debugging, control

structures, and writing sequences of programming (Jaipal-Jamani & Angeli, 2017). The

researchers found statistically significant differences between the pre and posttest

knowledge assessment scores, indicating that robotics activities were an effective strategy

for increasing participants’ abilities to write algorithms and debug programs (Jaipal-

Jamani & Angeli, 2017).

Kucuk and Sisman (2018) studied 15 preservice teachers’ experiences while

learning programming and robotics. The participants learned programming and robotics

in collaborative groups through a 13-week course, which met for four hours per week

(Kucuk & Sisman, 2018). The robotics activities involved participants composing

original programs for the robots (Kucuk & Sisman, 2018). Participants of the study

indicated that they felt the educational robotics programming course improved their

programming skills (Kucuk & Sisman, 2018).

Kim et al. (2018) assessed 19 preservice teachers’ debugging techniques and

common errors while using block-based programming. Debugging constitutes strategic

programming knowledge (McGill & Volet, 1997), which combines both syntactic and

semantic programming knowledge. In this study, preservice teachers participated in 12

hours of robotics learning modules wherein they built and programmed robots (Kim et

al., 2018). In their research, Kim et al. (2018) revealed that preservice teachers have

difficulty locating and fixing errors in block-based programs.

www.manaraa.com

47

Measuring preservice teachers’ programming comprehension. Studies have

used different measures to evaluate the programming comprehension of preservice

teachers, both with and without the intervention of educational robotics (Eguchi, 2013;

Jaipal-Jamani & Angeli, 2017; Kucuk & Sisman, 2018; Kim et al., 2018; Yadav et al.,

2014). However, few of these studies have comprehensively measured and reported the

impacts of different interventions, such as robotics, on preservice teachers’ programming

comprehension (Kim et al., 2015). For instance, a study by Arlegui, Pina, and Moro

(2013) on training teachers to use educational robotics provided only anecdotes about

what participants learned. In another example, a study by Bers and Portsmore (2005)

focused on partnerships between preservice teachers and engineering students learning

programming with educational robotics. The following paragraphs will first detail the

qualitative measures that have been used to assess preservice teachers’ comprehension of

programming; then, the quantitative measures will be described.

Qualitative measures. Various studies have utilized qualitative methods with

which to evaluate preservice teachers’ learning and comprehension of programming

(Eguchi, 2013; Kim et al., 2018; Kucuk & Sisman, 2018). In an educational robotics

intervention, Kucuk and Sisman (2018) used preservice teachers’ responses to interview

questions about their feelings on changes in their programming comprehension as a result

of the study. Preservice teachers’ grasp of programming concepts was also evaluated by

Eguchi (2013). In this study, preservice teachers were evaluated through teaching

observations performed by the instructor. In a thorough investigation, Kim et al. (2018)

measured preservice teachers’ comprehension of block-based programming by evaluating

their debugging skills. Like Eguchi (2013), Kim et al. (2018) relied on observational data.

www.manaraa.com

48

To do this, Kim et al. (2018) reviewed video recordings of students’ debugging processes

and used a coding instrument based on Vessey’s (1985) debugging paths in conjunction

with Katz and Anderson’s (1987) error-locating techniques. This study did not implement

educational robotics and focused on participants’ debugging processes in a block-based

programming environment. The researchers focused on the debugging process citing the

ideas of researchers such as Brennan and Resnick (2012), Grover et al. (2015), and Pea

and Kurland (1984), who agree that students who create programs that simply run do not

necessarily understand programming. Programs that run do not necessarily demonstrate

programming comprehension because the program may run by chance due to students

tinkering and rearranging programming blocks until a successfully functional

arrangement of blocks is found (Brennan & Resnick, 2012; Kim et al., 2018). Therefore,

Kim et al. (2018) investigated programming comprehension through the lens of

debugging instead of through methods that evaluate if students can simply arrange

programming blocks into functional formations (Kim et al., 2018). These studies utilized

different qualitative measures to investigate programming comprehension among

preservice teacher participants.

Quantitative measures. Only one study uncovered in this literature review

carefully assessed preservice teachers’ programming comprehension through quantitative

measures. In an educational robotics study, Jaipal-Jamani and Angeli (2017) used two

measures to gauge preservice teachers’ programming comprehension. These measures

included: (1) a questionnaire to measure preservice teachers’ science knowledge which

also included 3 Likert-type questions to assess participants’ perceived programming

knowledge, and (2) a worksheet to assess participants’ comprehension on sequencing,

www.manaraa.com

49

control structures, and debugging (Jaipal-Jamani & Angeli, 2017). These two different

measures were used to investigate preservice teachers’ programming comprehension

through quantitative methods.

Impact of Educational Robotics on Motivation Related to Programming

Few studies have examined motivation in relation to learning programming

(DeClue, 2003; Feldgen & Clua, 2004; Jenkins, 2001; Kelleher et al., 2007). The section

will focus on motivation related to programming. This section will begin with definitions

of motivation and teacher motivation, as well as descriptions of contributing factors to

motivation and motivation frameworks. To close, a synthesis of literature on the

motivational impact of educational robotics on teachers will be presented.

Motivation

Johns (1996) describes motivation as the extent to which persistent effort is

sustained toward a specific goal. Motivation combines mental and physical processes and

presents as one’s determination to spend time and effort on a task and can be divided into

two general categories of motivation: intrinsic and extrinsic (Cullen & Greene, 2011;

Deci & Ryan, 2000). Intrinsic motivation applies to internal drive to complete tasks based

on personal desire (Deci & Ryan, 2000; Maslow, 1943; Skinner, 1954). Extrinsic

motivation, on the other hand, applies to external rewards such as pay given for

completing tasks (Taylor, 1916). According to research by Sinclair (2008), teachers’

intrinsic motivation is greater than extrinsic motivation to teach. As cited in Han and Yin

(2016), Dörnyei and Ushioda (2011) divide teacher motivation into multiple components.

Han and Yin (2016) explained these components as (1) teachers’ inherent interest in

teaching, (2) lifelong commitment, and (3) discouraging factors based on teachers’

www.manaraa.com

50

negative experiences. Motivation is abstract, complex, and includes numerous indicators

(Ball, 1977; Jenkins & Davy, 2002; Law, Lee, & Yu, 2010). These numerous aspects of

motivation will be explained here. Then, frameworks dealing with motivation will be

outlined.

Indicators of motivation. Researchers have put forward numerous indicators of

motivation which fall into general categories like engagement (Singh, Granville, & Dika,

2002), extrinsic motivation (Amabile, Hennessey, & Tighe, 1994; Law et al., 2010;

Taylor, 1916), interest (Dewey, 1913; O’Keefe & Harackiewicz, 2017), intrinsic

motivation (Deci & Ryan, 2000; Maslow, 1943; Skinner, 1954), self-efficacy (Bandura,

1997), and value (Martin, 2007). These general indicators of motivation will be described

below.

Engagement. Flow theory states that the natural curiosity activated in learners is

vital for keeping learners intrinsically motivated (Egbert, 2003; Huang, Backman, &

Backman, 2010). Engaging learning tasks are required in order to maintain flow

(Csikszentmihalyi, 1975, 1990, 2000) within intrinsic motivation.

Behavioral engagement refers to learners’ attention, effort, and persistence (Kim

et al., 2017; Skinner, Kindermann, & Fuller, 2009). Contributing to the classroom,

concentration, and observable effort constitute behavioral engagement (Skinner et al.,

2009). The presence of behavioral engagement can be observed as on-task involvement

and participation (Fredricks, Blumenfeld, & Paris, 2004; Kim et al., 2015, 2017; Skinner

et al., 2009). A lack of behavioral engagement can be observed through learners’ dearth

of attention or expression of dissatisfaction with a task.

www.manaraa.com

51

Cognitive engagement centers on a learner’s investment in a task (Fredricks et al.,

2004). Cognitive engagement is linked to the way in which learning tasks are structured,

and the learning strategies involved (Kim et al., 2017). Motivation and self-regulated

learning are related to cognitive engagement (Fredricks et al., 2004).

Emotional engagement refers to the positive or negative feelings learners have

about the learning task which motivates students toward finishing learning tasks (Kim et

al., 2017; Skinner et al., 2009). High emotional engagement has been shown to indicate

motivated involvement in learners while low emotional engagement has been shown to

indicate withdrawal from a learning task (Skinner et al., 2009). Engagement is linked to

flow and, thus, also indicates intrinsic motivation (Martin, 2007, 2012).

Extrinsic motivation. Extrinsic motivation includes the motivating factors

external to learning like awards, recognition, or punishments (Amabile et al., 1994; Law

et al., 2010; Taylor, 1916). When people perform a task because of extrinsic motivation,

it may not be because they take enjoyment in the task itself, rather they are focused on

obtaining a reward (Cullen & Greene, 2011). High course grade aspirations and the desire

to score well on projects are examples of extrinsic motivation in education (Glynn,

Brickman, Armstrong, & Taasoobshirazi, 2011). Similarly, career aspirations and the

drive to obtain the desired job represent extrinsic motivation (Glynn et al., 2011).

Interest. Interest plays an important role in motivation (Deci, 1992; O’Keefe &

Harackiewicz, 2017). Interest is tied to the content of the learning task and reflects a level

of increased attention and effort (Krapp, Hidi, & Renninger, 1992; Renninger & Hidi,

2011). In an academic context, Singh et al. (2002) note that engagement and interest are

linked within motivation as engagement is “active involvement, commitment, and

www.manaraa.com

52

attention as opposed to apathy and lack of interest” (p. 324). Interest represents intrinsic

motivation and is tied to flow theory (Chan & Ahern, 1999; Csikszentmihalyi, 1975,

1990, 2000; Yonghiu, 2010). Flow is a level of learning absorption which sustains

learners’ motivation over long periods of time (Csikszentmihalyi, 1975, 1990, 2000;

Chan & Ahern, 1999; Yonghiu, 2010).

Intrinsic motivation. Intrinsic motivation is the internal drive people have to

complete tasks based on personal desire (Deci & Ryan, 2000; Maslow, 1943; Skinner,

1954). When people demonstrate intrinsic motivation, they have a commitment to goal

attainment based on an internal enjoyment in completing the task (Amabile et al., 1994;

Law et al., 2010). Deci and Ryan (2000) link intrinsic motivation to self-regulation,

persistence, and high performance, among other related indicators and outcomes.

Self-efficacy. Self-efficacy is one’s belief in one’s ability to succeed (Bandura,

1997) and signals highly versatile motivation (Bandura, 1997; Martin, 2007; Pajares,

1996). Self-efficacy is built through successes with experiences completing similar tasks

related to the task at hand (Bandura, 1997). Learners who have high self-efficacy in

relation to a learning task’s content are likely to have more determination and adapt better

in the face of adversity when experiencing initial difficulty with a learning task and

follow-through (Bandura, 1997). Self-efficacy is an indicator of motivation and is also

linked to expectancy-value (Martin, 2007).

Value. In learning theory, to what level learners believe that a task is useful,

pertinent, and manageable to them is categorized as the general concept of value

(Belland, Kim, & Hannafin, 2013). Task value is used to describe learners’ perceptions of

how important, interesting, and useful a task is (Wigfield & Eccles, 2000). Value

www.manaraa.com

53

promotes intrinsic motivation (Belland et al., 2013). Learners who perceive a learning

task as having a high task value produce more effort toward completing the task at hand

(Belland et al., 2013). Expectancy-value suggests that behavior is an outcome of the

perceptions an individual has for their expected level of success combined with their

perceptions of the value associated with completing the task (Fishbein & Ajzen, 1972).

Motivation models. Anderson and McLoughlin (2007) have remarked how

today’s programming students are impatient and expect immediate success while

beginning to learn to program. Jenkins (2001) argued that students’ motivation relating to

programming could be divided into four categories: intrinsic, extrinsic, social, and

achievement. Jenkins (2001) noted that many undergraduates are motivated by the

extrinsic promise that learning programming will expand their money-making potential.

However, Jenkins (2001) argued that intrinsic motivation was required for learners to

successfully learn how to program. There are several frameworks for motivation,

including those by Keller (1987), Svinicki (2010), and Vollmeyer and Rheinberg (2006).

These frameworks are shared in this section.

Keller’s (1987) ARCS model of motivation, for instance, is based on four

components of motivation: attention, relevance, confidence, and satisfaction. In Keller’s

(1987) framework, attention can be harnessed by surprise or inquiry. Relevance can be

formed by using real-world examples (Keller, 1987). Confidence can be created by

showing a learner that they can succeed with the learning task (Keller, 1987). Satisfaction

in Keller’s (1987) framework links to a learner’s feelings that the task is inherently

rewarding. The ARCS framework points to attention, relevance, confidence, and

satisfaction as factors that can promote and sustain a learner’s motivation (Keller, 1987).

www.manaraa.com

54

Svinicki (2010) touted a combined theory of motivation comprised of three

factors: the value of the task, the ability to influence the outcome of the task, and self-

efficacy. Value of task is based on multiple different factors, including (a) how

interesting the task is to the learner, (b) the relationship between the long-term goals of

the learner and the task, (c) the learner’s perceived usefulness of the task, (d) how the

task is valued by the learner’s peers, and (e) how important others view the task

(Svinicki, 2010). The ability to influence the outcome of the task is the learner’s

perception of if they can control the outcome of the task (Svinicki, 2010). A learner’s

self-efficacy is a learner’s belief that they can succeed (McGill, 2012). Svinicki’s (2010)

combined theory of motivation aligns with the established theories of self-determination,

expectancy-value, and behavioral, cognitive, and achievement goal orientation.

The cognitive-motivational model uses the expectancy-value model and has four

factors of motivation (Vollmeyer & Rheinberg, 2006). These factors consist of the

probability of success, anxiety related to failure, natural interest, and level of challenge

(Vollmeyer & Rheinberg, 2006). Anxiety in the cognitive-motivational model is tied to

fear of failure, while the challenge links to whether or not the learner wants to have

success with the task are aligned to expectancy-value (McGill, 2012). The cognitive-

motivational model factors work in combination with a learner’s level of engagement and

concentration (Vollmeyer & Rheinberg, 2006).

Motivation Related to Programming and Educational Robotics

Research indicates that participants with high levels of motivation spend more

time on learning, engaging learning materials with higher intensity, cooperate more with

peers, and are more open to learning and using new knowledge (Levin & Long, 1981;

www.manaraa.com

55

Martin, 2007). Today’s programming learners are motivated in ways unlike any other

generation (Guzdial & Soloway, 2002; Trees, 2010). Literature supports the motivational

impacts of educational robotics on novices learning programming in a variety of contexts

(Apiola, Lattu, & Pasanen, 2010; Cheng, 2017; McGill, 2012; Osborne, Thomas, &

Forbes, 2010; Petre & Price, 2004). For example, comparative research by Yamazaki et

al. (2015) with a mixed middle and high school population reported that utilizing

educational robotics increased positive responses to motivation questions compared to

game-based programming application control data. Research by Kim et al. (2015, 2018)

showed that preservice teachers must maintain high levels of intrinsic motivation to

succeed while learning programming. The following paragraphs explain the current

literature specific to preservice and in-service teachers’ programming motivation and the

impacts of educational robotics.

Teachers’ programming motivation. Negative feelings new teachers develop

about science concepts negatively influence their ability to become effective teachers

(Appleton, 2003; Bryan, 2003; Davis, Petish, & Smithey, 2006). Various modalities for

motivating novice programmers who may be struggling with programming have been

investigated, from multimedia modalities to educational robotics (Kolling & Rosenberg,

2001; Rich, Perry, & Guzdial, 2004; Yamazaki et al., 2015). McGill (2012) pointed out,

“It is important to investigate empirically whether or not learning environments actually

have an effect on student motivation since many of these systems were built for that

specific purpose” regarding different products for programming motivation (p. 2).

Nevertheless, numerous researchers studying the motivational effects of educational

robotics did not define motivation or provide details about their instruments’ questions,

www.manaraa.com

56

validity, and reliability (Adams, 2010; Cliburn, 2006; Lauwers, Nourbakhsh, & Hamner,

2009). Thus, previous research pertaining to motivation specific to preservice teachers is

indistinct.

Several researchers have recently studied educational robotics and programming

with in-service and preservice teacher populations (Jaipal-Jamani & Angeli, 2017; Kaya

et al., 2015; Sisman & Kucuk, 2019). Educational robotics interventions have been

effectively used to enhance preservice teachers’ motivation to integrate programming into

their curricula (Jaipal-Jamani & Angeli, 2017; Kaya et al., 2015). Jaipal-Jamani and

Angeli’s (2017) study reported that over 85% of their preservice teacher participants were

motivated to use robotics in their teaching. Similarly, Kaya et al.’s (2015) study exploring

the views of 11 preservice teachers on engineering concepts reported that 100% of their

participants decided to integrate block-based programming and educational robotics into

their elementary science classes. A study by Sisman and Kucuk (2019) adds that

preservice teachers were most motivated by educational robotics and the idea that they

could learn to teach their future students how to program educational robots.

Teachers’ programming motivation based on motivational indicators. Studies

have demonstrated improvements to in-service and preservice teachers’ motivation

through educational robotics interventions (Jaipal-Jamani & Angeli, 2017; Kay et al.,

2014; Kim et al., 2015; Kucuk & Sisman, 2018; Osborne et al., 2010; Perritt, 2010). For

instance, Kay et al. (2014) found that in-service teachers’ confidence in their

programming skills increased in a statistically significant manner after they completed

educational robotics activities, including robot construction and programming. Perritt

(2010) concluded that confidence built through educational robotics activities increased

www.manaraa.com

57

preservice and in-service teachers’ motivation to implement educational robotics and

programming into their instruction. Sullivan and Moriarty (2009) found that educational

robotics instruction improved in-service teachers’ perceptions of the value of

programming educational robotics in the classroom, implying that participants are

motivated to utilize programming in the classroom. For preservice teacher populations,

research indicated that developing self-confidence with programming educational

robotics is the key to motivating preservice teachers to use programming (Kim et al.,

2015; Osborne et al., 2010). Similarly, several researchers have shown that preservice

teachers’ engagement and confidence in STEM concepts increased after being involved

in educational robotics activities (Jaipal-Jamani & Angeli, 2017; Kim et al., 2015; Kucuk

& Sisman, 2018). Furthermore, preservice teachers’ interest and self-efficacy in STEM

concepts increased after they completed educational robotics activities (Adams et al.,

2014; Jaipal-Jamani & Angeli, 2017; Kim et al., 2015; Ortiz et al., 2015).

Measuring Motivation

Motivation has many interrelated indicators (Bandura, 1997; Dewey, 1913;

Martin, 2007; O’Keefe & Harackiewicz, 2017; Singh et al., 2002). In this section, general

instruments for gathering data on motivation in education will first be described. Then,

more specific instruments that have been designed to evaluate programming motivation

will be shared.

Educational motivation instruments. Numerous instruments exist for measuring

participants’ general motivation in relation to the field of education. Students’ motivation

can be measured with the Motivated Strategies for Learning Questionnaire, or MSLQ

(Pintrich, 1999; Pintrich & De Groot, 1990). Landry’s (2003) Student Motivation Scale

www.manaraa.com

58

includes items inspired by Pintrich and De Groot (1990) to measure undergraduate

students’ motivation to complete their studies in the face of obstacles (Martin, 2003).

Similarly, Sinclair, Downson, and McInerney (2006) devised the Motivational

Orientations to Teach Survey, or MOT-S, which includes 80 motivational questions

aimed to assess the teaching motivation of preservice teachers. Other motivation

instruments include the Questionnaire of Current Motivation, which is designed to

measure initial motivational and uses the cognitive-motivational factors of the probability

of success (Vollmeyer & Rheinberg, 2006), anxiety related to failure, natural interest, and

level of challenge (Rheinberg, Vollymeyer, & Burns, 2001). Keller’s (1983, 1987)

ARCS-based Instructional Materials Motivation Survey instrument measures the impact

of integrating a tool designed for increasing motivation into one’s instruction. Glynn et

al. (2011) created the Science Motivation Questionnaire II, which evaluates the general

science motivation of college learners through the subscales of intrinsic motivation, self-

determination, self-efficacy, career motivation, and grade motivation.

Evaluating motivation towards programming. Specialized instruments directly

related to programming concepts and educational robotics have been inspired by the more

general motivation instruments described above. This section will first highlight

qualitative measures of programming motivation. Then, this section will describe

quantitative measures of programming motivation.

Qualitative measures. There are different qualitative measures for motivation

related to programming and educational robotics (Jaipal-Jamani & Angeli, 2017; Kaya et

al., 2015; Kim et al. 2015; Kucuk & Sisman, 2018; Yadav et al., 2014). Kim et al. (2015)

used an adapted version of Black and Deci’s (2000) learning self-regulation

www.manaraa.com

59

questionnaire, or SRQ-L, to measure autonomous and controlled motivation. In the study,

Kim et al. (2015) used surveys and interviews to gather data on preservice teachers’

motivation while using educational robotics. Yadav et al. (2014) measured preservice

teachers’ motivation to integrate computational thinking programming exercises into

their future classrooms by using open-ended questions focusing on three categories,

including computational thinking, the relationship of computational thinking to other

disciplines, and integrating computational thinking into the classroom. Similarly, Kaya et

al. (2015) studied preservice teachers’ experiences in learning programming through

educational robotics and measured participants’ motivation through qualitative data

gathered through reflective essays. Kucuk and Sisman (2018) gathered data on preservice

teachers’ motivation through interview questions like “How have you felt cognitively and

emotionally while working on the robotics programming activities?” (p. 307). Jaipal-

Jamani and Angeli (2017) studied preservice teachers’ interest and self-efficacy relating

to programming concepts and robotics. In this study, Jaipal-Jamani and Angeli (2017)

utilized a questionnaire about participants’ self-efficacy with computational thinking and

robotics as well as a questionnaire in which participants self-rated their confidence with

teaching block-based programming educational robotics lessons. Ortiz et al. (2015)

gathered qualitative data on preservice teachers’ motivation during educational robotics

activities through observations, participants’ comments, and reflective essays.

Quantitative approaches. Other studies have taken quantitative approaches to

investigate the effects of educational robotics on motivation (McGill, 2013; Wang, Mei,

Lin, Chiu, & Lin, 2009). A prime example is McGill’s (2013) instrument, which borrows

aspects of Keller’s (1987) ARCS model and Wiedenbeck’s (2005) computer self-efficacy

www.manaraa.com

60

scale. McGill’s (2013) instrument is comprehensive and is specialized for educational

robotics motivation. McGill’s (2013) study measured four components of motivation:

attention, relevance, confidence, and satisfaction. This instrument investigated the

motivational effects of educational robotics on a population of non-computer science

majors using Wiedenbeck’s (2005) computer programming self-efficacy scale measured

the confidence of participants as they completed programming tasks. McGill (2012)

measured motivation through quantitative data gathered with Keller’s (1987)

instructional materials motivation survey. Other examples are the Wang et al.’s (2009)

motivation questionnaire and experience questionnaire. The motivation questionnaire

evaluated students’ feelings related to programming motivation before and after

instruction and includes the three subscales of motivation to learn programming, self-

efficacy, and perception of programming (Wang et al., 2009). The experience

questionnaire, which was given after instruction, included two subscales for classroom

experience and classroom atmosphere (Wang et al., 2009).

Chapter Summary

 This literature review examined applicable literature on the topics of

programming in K-12 education, educational robotics, comprehension, and motivation.

Programming is the process of designing and creating special instructions for computers

to run, known as programs (Ceruzzi, 1998). Block-based programming languages can

help propel novices past the traditional difficulties of text-based programming languages

in order to explore abstract computer science concepts quickly (Bers et al., 2014; Kim et

al., 2018; Lye & Koh, 2014; Malan & Leitner, 2007; Wilson & Moffat, 2010). Although

block-based programming has demonstrated positive motivational effects with preservice

www.manaraa.com

61

teachers (Yadav et al., 2011; Yadav et al., 2014), programming is still inherently abstract.

Both in-service and preservice teachers attribute their lack of confidence toward teaching

computer science content to their perspectives that programming is difficult and abstract

(Bower et al., 2017; Grover & Pea, 2013; Ortiz et al., 2015; Resnick et al., 2009).

Educational robotics have been shown to make learning abstract concepts more concrete

(Altin & Pedaste, 2013; Barker et al., 2014; Mikropoulos & Bellou, 2013; Nugent et al.,

2010). Block-based programming and educational robotics pair well together because of

the constructible nature of each medium (Dagdilelis et al., 2005; Staszowski & Bers,

2005). Numerous studies undergird the benefits of pairing educational robotics with

programming (Bers et al., 2002; Bers & Ponte, 2005; Huang et al., 2013). Commonly,

educational robotics practices use robots as mindtools (Jonassen, 2000) within

constructivist and constructionist learning frameworks (Alimisis, 2013; Kucuk &Sisman,

2018; Mikropoulos & Bellou, 2013). Programming comprehension is the ability to

predict what a program will do by utilizing mental models (Ala-Mutka, 2004) and

includes syntactic, semantic, and strategic knowledge (Bucks, 2010; Mayer, 1979;

McGill & Volet, 1997). The effects of educational robotics on the programming

comprehension of in-service (Kay et al., 2014; Sullivan & Moriarty, 2009) and preservice

teachers (Eguchi, 2013; Jaipal-Jamani & Angeli, 2017; Kim et al., 2018; Kucuk &

Sisman, 2018) have been studied with varying results. Qualitative measures of preservice

teachers’ programming comprehension (Eguchi, 2013; Kim et al., 2018; Kucuk &

Sisman, 2018) are more common than quantitative measures (Jaipal-Jamani & Angeli,

2017). Recent studies of in-service and preservice teacher populations have shown that

educational robotics can be motivational (Jaipal-Jamani & Angeli, 2017; Kaya et al.,

www.manaraa.com

62

2015; Sisman & Kucuk, 2019). There are numerous education-specific motivational

instruments, but few tailored to programming education (McGill, 2013; Wang et al.,

2009). In conclusion, educational robotics can be used to make abstract concepts like

programming more concrete (Altin & Pedaste, 2013; Barker et al., 2014; Mikropoulos &

Bellou, 2013; Nugent et al., 2010) and have been shown to have motivational effects with

teacher populations (Jaipal-Jamani & Angeli, 2017; Kaya et al., 2015; Sisman & Kucuk,

2019).

www.manaraa.com

63

CHAPTER 3

METHOD

The purpose of this action research was to evaluate the effect of educational on

the programming comprehension and motivation of preservice teachers at a medium-

sized liberal arts university in the southeastern United States. The research questions for

this study were:

1. What is the effect of educational robotics on preservice teachers’ comprehension

of programming concepts?

2. How and to what extent does educational robotics influence preservice teachers’

motivation related to programming?

Research Design

This study utilized action research. According to Mertler (2017), action research

is typically carried out by practitioners with a “vested interest in the teaching and learning

process” of a specific population and setting (p. 4). The main advantage of action

research is its specificity. Greenwood and Levin (2007) described action research as

“context bound” (p. 63). This means that action research is specific to the class and

participants taking part in the study (Creswell, 2014; Mertler, 2017; Rudestam &

Newton, 2007). Action research fits my context because I was not only the researcher in

this study but also the instructor. I had a highly contextualized problem specific to my

course that needed to be addressed. Although the results of an action research study such

as mine cannot be widely generalized to other instances and settings, the results of the

www.manaraa.com

64

study are tailored to the research questions and environment being investigated. Further,

an action research type intervention is more appropriate for my teaching context than a

true experimental design with control and experimental treatments. In my action research

study, all the participants received the benefits of the study. What differentiates action

research from more traditional lines of inquiry are both the process and the end goal

(Mertler, 2017). While traditional lines of inquiry are typically performed by outsiders

withdrawn from the study’s subjects with the goal of documenting teaching or learning,

action research is typically performed by insiders, such as myself, in collaboration with

the participants being studied with the end goal of improving teaching and learning (Zeni,

1998). Accordingly, the goal of this action research was designed to pinpoint actionable

steps to improve teaching practices and student outcomes.

Greenwood and Levin (2007) described one advantage of action research as it is a

“pragmatic” system to solve “real-life problems holistically” (p. 63). Mertler (2017)

affirmed that action research solves problems holistically by stating that action research

tends to align more harmoniously with mixed methods than with singularly qualitative or

quantitative strategies. In addition, Morgan (2014) explained that mixed methods fit best

with a pragmatist paradigm. As mentioned in the Researcher Subjectivities and

Positionality section of this dissertation, my personal paradigm aligns with a pragmatist

standpoint. Thus, mixed methods were selected for this study to provide a holistic and

best-aligned method for evaluating the research questions. While the quantitative data in

this study were employed to point toward the effect of the intervention on programming

comprehension and motivation, qualitative data were harnessed to report the experiences

and opinions of the participants. Analyzing two different forms of data, Mertler (2017)

www.manaraa.com

65

argued, “leads to greater credibility in the overall findings” (p. 107). By analyzing two

different styles of data, I was able to discover information that would have otherwise

been overlooked if only one data collection method was utilized. For my study, mixed

methods merged quantitative data and qualitative data, which eliminated biases of a

single data collection method, which showed the full picture of the phenomena at hand

(Creswell, 2014). The mixed methods design was chosen so I could triangulate if the data

gathered from the motivation survey are more complex than one data collection style

would detect (Almalki, 2016). Triangulation is a process of corroboration using evidence

from different sources, different types of data, or different methods of data collection

(Buss & Zambo, 2014; Creswell, 2014; Patton, 2002). I compared data side-by-side from

the surveys and individual interviews to determine if the quantitative data supported the

qualitative data.

I utilized a convergent parallel mixed methods design for my action research.

Creswell (2014) explained convergent parallel mixed methods design as a technique in

which the researcher gathers quantitative and qualitative data at the same time then

analyzes the results of the study separately in order to see if the triangulation of results

“confirm or disconfirm” each other (p. 219). The first reason convergent design was used

for this study is outlined by Creswell and Plano Clark (2018), who have described

convergent design as an intuitive and efficient strategy for researchers new to performing

mixed methods. Another reason convergent design was used in this study was time.

Creswell and Plano Clark (2018) noted that convergent parallel mixed methods are often

used when the researcher “has limited time available for collecting data in the field.” (p.

68). The small window of time available to dedicate to this study within the class

www.manaraa.com

66

schedule necessitated the convergent accumulation of quantitative and qualitative data.

Further, convergent design enabled me to compare participants’ feelings gathered

through qualitative questioning with the data gathered from my standpoint through

surveys (Creswell, 2014; Creswell & Plano Clark, 2018). Coming full circle, Creswell

and Plano Clark (2018) linked the pragmatic nature of action research described by

Greenwood and Levin (2007) to convergent design with the statement, “assumptions of

pragmatism are well suited for guiding the work of merging the two approaches

[quantitative and qualitative] into a larger understanding” (p. 69). Because this study

utilized both surveys and individual interviews to analyze motivation, the perspectives of

both the participants and I were united.

Setting and Participants

This study took place at a medium-sized liberal arts university in the southeastern

United States. This study occurred within an educational technology course that

preservice teachers must take to graduate as education majors. In this course, students

were taught how to utilize computers, multimedia, mobile technologies, interactive

whiteboards, apps, and websites, among other educational technologies. There were no

prerequisite classes for this course. Therefore, students came into the course with various

levels of experience with technology. The setting of this study was a large digital learning

lab complete with personal computers for each student, a SmartBoard, two projectors,

and associated screens. In addition to the computer clusters offered in this room, there

were spaces for collaboration activities in the room. There were 12 Lego EV3 robotics

kits for the class along with 24 laptops with the Lego programming software, so each

www.manaraa.com

67

student could write his or her own programs. Each laptop was Bluetooth enabled in order

to communicate the programs to the Lego EV3 robots.

This study included a purposeful sample of participants. As Creswell (2014)

explained, purposeful sampling allows the researcher to select the participants who will

“best help the researcher understand the problem and the research question” (p. 189). The

inclusion criteria stipulated that the participants needed to be preservice teachers with

education majors. Therefore, out of the two sections of the course taught by me, the

section of the course with the fewest non-education major students was selected to

preserve the highest population value for the study. Out of the 23 students in the class,

there were two non-education majors whose data were removed from the study to avoid

threats to validity. Of the eligible 21 education majors, three participants dropped out of

the class during the study. These participants’ data were removed prior to analysis. An

ultimate total of 18 undergraduate preservice teachers made up the sample for this study.

As shown in Table 3.1, these undergraduate preservice teacher participants represented

all the education majors offered by the university: early childhood education (2),

elementary education (9), middle level education (3), special education (2), and physical

education (2). The participants included 15 females and three males. The participants’

ages ranged from 18 to 23, with a mean age of 19 (SD = 1). The participants included

freshmen (6), sophomores (11), and one junior. Four of the participants reported their

technology comfort level as basic, 12 intermediate, and two advanced. Only one

participant had limited prior programming experience and prior programming instruction.

Two participants reported having limited prior experience programming a robot and prior

robotics instruction.

www.manaraa.com

68

Table 3.1. Participants’ Demographic Information

Age Gender Classification Education

Major

Tech.

Comfort

Level

Prog.

Exp.

Robo.

Exp.

19 Female Sophomore Elementary Intermediate No No

18 Female Sophomore Elementary Intermediate No No

21 Female Junior Elementary Intermediate No No

19 Female Sophomore Elementary Basic Yes Yes

19 Female Sophomore Elementary Advanced No No

20 Female Sophomore Special Intermediate No No

23 Female Sophomore Physical Intermediate No No

18 Female Freshman Elementary Intermediate No No

19 Female Freshman Early Childhood Basic No No

18 Female Freshman Early Childhood Basic No No

19 Male Sophomore Physical Intermediate No No

19 Female Sophomore Elementary Intermediate No No

18 Female Freshman Middle Basic No No

20 Male Sophomore Middle Intermediate No No

20 Female Sophomore Special Intermediate No No

18 Female Freshman Elementary Intermediate No No

18 Female Sophomore Elementary Advanced No No

18 Male Freshman Middle Intermediate No Yes

Note. Prog. Exp. means programming experience and Robo. Exp. means robotics

experience.

Intervention

This study utilized an educational robotics intervention that spanned four weeks

of lessons. The lessons included in this intervention used mindtools to teach

programming through a constructivist framework (Jonassen, 2000; Piaget, 1967) in a

collaborative environment. These lessons were inspired by a robotics curriculum

previously developed by the research setting’s physics and education faculty, including

myself. This robotics curriculum was created as part of a federal No Child Left Behind

Improving Teacher Quality Higher Education grant for a grant titled PRISM –

Partnership for Robotics Integration using Science and Math (South Carolina

Commission on Higher Education, 2016). Activities and challenges were abridged and

www.manaraa.com

69

tailored to the specific goal of teaching programming through robotics. Lego EV3 robots

running the EV3-G block-based programming language were chosen for this intervention

because of Lego robotics’ popularity in schools at the K-8 levels (Martin et al., 2000;

Martin et al., 2011; Martin & Resnick, 1993). Participants were paired randomly for the

intervention. Marzano (2007) recommended cooperative pairs for learning activities

involving problem-solving in order to allow learners to collaboratively discuss and reflect

upon the problems they are given. Classes met twice per week for one hour and fifteen

minutes per period. Each lesson was aligned to both the South Carolina Computer

Science and Digital Literacy Standards for grades K – 8 (South Carolina Department of

Education, 2017) as well as course standards.

The robotics intervention was divided into four week-long units. These units were

(1) Basic Procedures, (2) Advanced Procedures, (3) Control Structures, and (4) Variables.

This sequence of these units was based on the robotics curriculum created as part of a

PRISM grant (South Carolina Commission on Higher Education, 2016). The Basic

Procedures unit focused on the core syntactic programming skills needed to write

functional programs. The Advanced Procedures unit focused on semantic and strategic

programming skills needed to write programs which navigated the robots around

obstacles. The Control Structures unit focused on writing programs utilizing flow control

based on predetermined parameters, such as if/then statements and loops. The Variables

unit focused on integrating variables into the flow control of advanced programs. These

units are shown in Table 3.2 with two main topics per unit. Each unit consisted of

demonstrations, learning activities, and challenges. These units will be described in detail

in the following sections.

www.manaraa.com

70

Table 3.2. Robotics Intervention Units

Unit Topics

Basic Procedures Syntactic knowledge of the programming language

Odometry

Programming for seconds/rotations/degrees

Advanced Procedures Semantic programming knowledge

Pseudocoding

Strategic programming knowledge

Programming turning

Control Structures Flow control

Loops

If/then statements

Variables Variables

Combining variables with control structures

Intrinsic motivation involved learners’ desire to learn about the topic due to their

own internal self-interests (Eccles, Simkins, & Davis-Kean, 2006; Ryan & Deci, 2000,

2020). Researchers have shown that physically interacting with robots can impact

intrinsic motivation (Apiola et al., 2010). Likewise, problem-solving, as found in the

challenges, has been shown to impact intrinsic motivation (Kucuk & Sisman, 2018).

Career motivation is an idea that posits that learners who demonstrate motivation

in a subject see that subject’s relevance to their future careers (Arwood, 2004; Glynn,

Taasoobshirazi, & Brickman, 2009). Career motivation aligned with the instructional

portion of the lessons where participants were explained how to write programs and how

programming concepts could be integrated into their future teaching.

Self-determination has been defined by Black and Deci (2000) as the control

learners have over their learning. Similarly, self-efficacy is described as students’

confidence in their ability to achieve the learning task (Bandura, 1997; Lawson, Banks, &

www.manaraa.com

71

Logvin, 2007). Self-determination is brought about through confidence-building (Ryan &

Deci, 2000, 2020), and self-efficacy is brought about through learners experiencing

success (Bandura, 1997). These two categories of motivation aligned with the learning

activities and challenges in the lessons, which could boost learners’ confidence through

success.

Motivation to Integrate Programming into Teaching (MTIPIT) was built on

previous research about teacher motivation, which included a combination of intrinsic,

extrinsic, and altruistic factors (Brookhart & Freeman, 1992; Han & Yin, 2016; Sinclair,

2008). MTIPIT encompassed learners’ feelings about including programming instruction

and activities in their professional teaching, built through their experiences with all the

different aspects of the programming lessons (Brookhart & Freeman, 1992; Han & Yin,

2016; Sinclair, 2008).

The units of the Programming Motivation Survey were aligned to the various

aspects of the lesson plans, as delineated in Table 3.3.

Table 3.3. Programming Motivation Survey Subscale and Lesson Aspect Alignment

Subscale Lesson Aspect

Intrinsic Motivation Using robots

Learning activities

Challenges

Career Motivation Programming instruction

Lectures on programming integration

Self-Determination Learning activities

Challenges

www.manaraa.com

72

Table 3.3. Programming Motivation Survey Subscale and Lesson Aspect Alignment

Continued.

Subscale Lesson Aspect

Self-Efficacy Learning activities

Challenges

MTIPIT Programming instruction

Lectures on programming integration

Using robots

Learning activities

Challenges

Basic Procedures

The first week focused on basic programming procedures. In this unit,

participants became familiar with how programs are composed. As outcomes of these

lessons, their associated activities, and challenges, participants were able to test and

debug a program, create functioning programs, calculate values for programs, and used

three different methods of programming to solve a problem. Table 3.4 details the

alignment of the lesson plans to state standards, and the course’s student learning

outcomes.

Table 3.4. Basic Procedures Lesson Plan Alignment

Lesson Plan SC State Computer

Science Standard

Lesson Objectives

Basic Procedures Class 1

Standard 1: Recognize that

many daily tasks can be

described as step-by-step

instructions (i.e.,

algorithms).

Standard 4: Develop a

program to express an idea

or address a problem

Test and debug a program

Create a functioning

program

www.manaraa.com

73

Table 3.4. Basic Procedures Lesson Plan Alignment Continued.

Lesson Plan SC State Computer

Science Standard

Lesson Objectives

Basic Procedures Class 2 Standard 1: Recognize that

many daily tasks can be

described as step-by-step

instructions (i.e.,

algorithms).

Standard 4: Develop a

program to express an idea

or address a problem

Calculate values for a

program

Use different methods of

programming to solve a

problem

During the first class of the Basic Procedures unit, participants were familiarized

with the syntax of the programming language and given step-by-step instructions for

writing programs with different methods in the EV3-G block-based programming

language. The instructor highlighted the functionality and customizability of each type of

programming block throughout the presentation. Instructional possibilities and curricular

connections with science and math were highlighted. The instructor demonstrated

programming functions on an example robot. Participants were instructed to follow along

throughout the training and write and execute programs, as shown by the instructor when

appropriate. The instructor demonstrated a basic debugging process. Then, participants

were given free time in their pairs to experiment with the robots and become comfortable

with programming them. As an exit ticket for dismissal, participants shared one discovery

their pair made while programming their robot during the experimentation time. More

details on this class period’s activities are in a lesson plan, as Figure A.1 in Appendix A.

In the next class period, the formal in-class robotics programming activities

began. Participants were introduced to odometry and calculating values for their

programs. Participants learned how odometry could be used to solve problems. Pairs of

www.manaraa.com

74

participants first used trial and error and then used odometry in their programs. Once

participants completed the odometry activity, they were given a challenge. For this

challenge, they were instructed to program their robots to travel one meter using three

different programming methods. Their programs must move the robots based on (1) an

amount of time, (2) revolutions, and (3) degrees. For full details on this class period, see

the lesson plan located in Figure A.2 in Appendix A. An example solution for the One

Meter Challenge is available as Figure A.3 in Appendix A.

Advanced Procedures

The second week focused on more advanced programming procedures. In this

unit, participants became familiar with more customized programs designed to

accomplish specific tasks. As outcomes of these lessons, their associated activities, and

challenges, participants were able to predict the outcome of a program, modify a simple

program, and create a program to solve a problem. Table 3.5 details the alignment of the

lesson plans in this unit to state standards and course student learning outcomes.

Table 3.5. Advanced Procedures Lesson Plan Alignment

Lesson Plan SC State Computer Science

Standard

Lesson Objectives

Advanced Procedures

Class 1

Standard 1: Design, evaluate,

and modify simple

algorithms (e.g., steps to

make a sandwich; steps to a

popular dance; steps for

sending an email).

Predict the outcome of a

program

Modify a simple program

www.manaraa.com

75

Table 3.5. Advanced Procedures Lesson Plan Alignment Continued.

Lesson Plan SC State Computer Science

Standard

Lesson Objectives

Advanced Procedures

Class 2

Standard 3: Decompose

problems into subproblems

and write code to solve the

subproblems (i.e., break

down a problem into smaller

parts).

Predict the outcome of a

program

Create a program to solve

a problem

The first class of the Advanced Procedures unit focused on more difficult

programming, including turning. Participants were introduced to pseudocode. Then,

participants were presented with step-by-step instructions for writing programs for

turning the robots using the block-based programming editor and the EV3-G

programming language. The instructor highlighted the functionality and customizability

of each type of programming block throughout the presentation, as well as instructional

possibilities and curricular connections. The instructor demonstrated the different

programming functions for turns on an example robot. Based on given program

examples, participants predicted the outcome of programs before they were performed by

the robot. Participants wrote more advanced programs to make their robots follow lines

through courses designed with colored tape, as illustrated in Figure 3.1. After this

instruction, pairs worked on a learning activity in which they modified a given program

in order to move their robots around the box that their robots came in. For full details on

this class period, see the lesson plan located in Figure A.4 in Appendix A. For a potential

programming solution to the challenge for this lesson, see Figure A.5 in Appendix A.

www.manaraa.com

76

Figure 3.1. Line following activity

The second class of the Advanced Procedures unit began with a pseudocode

warmup activity. In this activity, students designed paper airplanes and then wrote

instructions for a partner to create an identical model. Throughout this activity,

participants learned how exact their algorithms needed to be for the computer to execute

them when they are writing advanced programs properly. The next part of the class

period revolved around a challenge. To begin, the instructor led the students in a

pseudocode demonstration for following a path. Then, the challenge was introduced. In

the challenge, pairs programmed their robots through a maze made from electrical tape.

Before placing their robot in the maze, partners were required to write their programs

from a schematic and calculations lens, as shown in Figure 3.2. Once partners showed the

instructor their program, they could run it in a maze and make necessary modifications.

There were multiple copies of the maze set up on the floor throughout the classroom and

neighboring hallway, as displayed in Figure 3.3, so multiple pairs of students could share

www.manaraa.com

77

each maze in order to ensure efficiency. For full details on this class period, see the

lesson plan located in Figure A.6 in Appendix A. A schematic for the maze is available in

Appendix A as Figure A.7.

Figure 3.2. Partners write a maze program.

www.manaraa.com

78

Figure 3.3. Participants test their programs in the mazes.

Control Structures

The third week of the robotics intervention focused on the programming of

different control structures. In particular, the participants were introduced to

programming loops and if/then statements. As outcomes of these lessons, their associated

activities, and challenges, participants were able to predict the outcome of programs,

create programs using control structures, and modify programs using control structures.

www.manaraa.com

79

Table 3.6 details the alignment of the lesson plan to state standards and course student

learning outcomes.

Table 3.6. Control Structures Lesson Plan Alignment

Lesson Plan SC State Computer Science

Standard

Lesson Objectives

Control Structures

1

Standard 2: Use and

compare simple coding

control structures (e.g., if-

then, loops).

Predict the outcome of a

program that uses control

structures

Create a program using control

structures

Control Structures

2

Standard 2: Use and

compare simple coding

control structures (e.g., if-

then, loops).

Modify a simple program using

control structures

Create a program using control

structures

During the first class of the Control Structures unit, participants were presented

with information on what control structures are and how they control the flow of

programs. Then, participants were given step-by-step instructions for writing loops into

programs using the block-based programming editor. The instructor highlighted the

functionality and customizability of different types of loops throughout the presentation.

Instructional possibilities for looping and curricular connections for control structures, in

general, were identified. The instructor demonstrated the different programming

functions on an example robot, and participants predicted the actions of the robot based

on the given loops in the program. The learning activity for this unit required pairs to

program their robots to move in a slithering motion, making a hissing sound at the end of

the program after the required loops. For full details on this class period, see the lesson

www.manaraa.com

80

plan located in Figure A.8 in Appendix A. An example programming solution to the

Slithering One Meter Challenge is available as Figure A.9 in Appendix A.

In the second class of the Control Structures unit, the instructor reinforced the

utilization of control structures by providing more details on loops and if/then statements.

Videos on different programming connections to different subjects were shared by the

instructor. Then, the Lap Loop Challenge was given to participants. In this challenge,

pairs modified their Lap Activity programs by deleting superfluous programming, which

could be written in a more succinct fashion with loops. The objective was to modify their

programs in order to successfully move their robot around their box three times using the

loop, playing a different sound after each loop was completed. For full details on this

class, please see the lesson plan located in Figure A.10, and the potential solution to the

Lap Loop Challenge demonstrated in Figure A.11 in Appendix A.

Variables

The fourth week of the robotics intervention focused on how variables were used

in programming. Participants learned that variables are containers for changing value

information in programs. This unit also introduced the color sensor. As outcomes of these

lessons, their associated activities, and challenges, participants were able to predict the

outcome of a program based on given variables, create a program using variables, and

modify a program using variables. Table 3.7 details the alignment of the lesson plan to

state standards and course student learning outcomes.

www.manaraa.com

81

Table 3.7. Variables Lesson Plan Alignment

Lesson Plan SC State Computer Science

Standard

Lesson Objectives

Variables Class 1 Standard 5: Identify variables and

compare the types of data stored as

variables.

Predict the outcome of a

program based on the

given variables.

Create a program using

variables.

Variables Class 2 Standard 4: Design and code

programs to solve problems

Standard 5: Identify variables and

compare the types of data stored as

variables.

Create a program using

variables.

Modify a program using

variables.

The first class of the Variables unit began with an overview of the color sensor.

First, the instructor demonstrated how the color sensor was used. Participants were

presented with step-by-step instructions for writing programs using variables inside

if/then statements in the block-based programming editor. The instructor highlighted the

functionality of the color sensor and how it could be used with the different types of

programming blocks related to variables, like the variables block, the math block, and the

read numeric and write numeric settings. Throughout the presentation, curricular

connections and instructional possibilities were shared. The instructor demonstrated the

color sensor on an example robot. Then, pairs wrote programs utilizing the color sensor

that scanned colors, incrementing a variable each time a predetermined color was

detected by the sensor. The instructor then introduced the Red Light Activity. In the

learning activity, pairs programmed their robots to speed up when the color sensor detects

blue (increasing the speed variable each time), and stop the robot when the color sensor

detects red. For full details on this class, see the lesson plan located in Figure A.12 in

www.manaraa.com

82

Appendix A in addition to the schematic for the Red Light Activity available in Figure

A.13.

For the final robotics class, the Variables unit’s Color Maze Challenge was

shared. For this challenge, the mazes utilized in the Maze Challenge were modified. Red

pieces of tape were added to the mazes at points where the robots needed to turn right.

Green pieces of tape were added to the mazes at points where the robots needed to turn

left. The criteria for the Color Maze Challenge stipulated that every time the robots

encountered a red line, they turned right and every time they encountered a green line

they turned left and increment a variable by one on the Lego EV3’s screen using a

variable and the formula (x + 1). The walls of the maze and the finish line were made of

black tape, so the robots needed to be programmed to stop if they detected the black tape.

Students completed this activity when they successfully navigated their robots to the end

of the maze using programming, which utilized movement, control structures, and

variables. For more details, see the lesson plan located in Figure A.14 in Appendix A. A

schematic for this maze is included in Appendix A as Figure A.15. An example solution

for this challenge is also available in Figure A.16 in Appendix A.

Data Collection Methods and Data Sources

Multiple sources of data were utilized to inform the results of this study. These

sources were (1) Programming Comprehension Assessment, (2) Programming

Motivation Survey, (3) field notes, and (4) individual interviews. Each research question

and its associated data sources are represented in Table 3.8. The data sources used in this

study are described in detail in the paragraphs below.

www.manaraa.com

83

Table 3.8. Research Questions and Data Sources Alignment

Research Questions Data Sources

RQ#1: What is the effect of educational

robotics on preservice teachers’

comprehension of programming concepts?

Pretest and posttest Programming

Comprehension Assessment

RQ#2: How and to what extent does

educational robotics influence preservice

teachers’ motivation related to programming?

Pre-instructional and post-

instructional Programming

Motivation Survey

Field notes

Individual interviews

Programming Comprehension Assessment

 To assess the construct of programming comprehension, participants completed

the researcher-created pretest and posttest Programming Comprehension Assessment

found in Appendix B once before the intervention began, and once immediately after the

intervention concluded. The pretest and posttest data allowed me to determine

participants’ comprehension of programming concepts. The assessment was constructed

of 20 questions and divided into four subsections with five questions each. Each of the

subsections was aligned to the four units of instruction: (1) Basic Procedures, (2)

Advanced Procedures, (3) Control Structures, and (4) Variables. As demonstrated in

Appendix C, each question was aligned to a South Carolina Computer Science and

Digital Literacy Standard (South Carolina Department of Education, 2017) as well as a

lesson objective from each lesson.

The questions prompted participants to read, debug, differentiate, problem-solve,

and arrange portions of programs. The first five questions focused on basic procedures in

programming. For example, participants were asked to arrange pieces of a program so

www.manaraa.com

84

that the program worked and successfully moved the robot. In the Advanced Procedures

subsection, participants were asked to predict the outcome of a program, modify a

program, or create a program that solved a problem using blocks of programming that

included turns. For example, participants were asked to predict where a robot running a

given program would end in relation to its starting location after executing the given

program. The next subsection aligned with the Control Structures unit of instruction. This

subsection focused on utilizing loops and if/then statements to build programs. For

example, participants were asked to simplify a program using loops. In this section, for

example, participants were asked to choose the string of programming which included

variables to produce the desired results. Each question was graded on a nominal scale as

either correct or incorrect (Devlin, 2017). Each correct answer was worth one point for a

total of 20 possible points. The Programming Comprehension Assessment was designed

to take about 30 minutes to complete. The instrument was validated by two experts in

programming and robotics (see the full feedback from each reviewer in Appendix D).

One expert was part of the team that created the South Carolina K-8 computer science

standards while the other is a physics professor and president of a state-wide Lego

robotics league. Through the validation process, updates were made to the Programming

Comprehension Assessment based on the experts’ suggestions. An example of such

feedback is exhibited in Figure 3.4. For the result of this feedback, review question #18 in

the final Programming Comprehension Assessment in Appendix B.

Figure 3.4. Example feedback from expert.

www.manaraa.com

85

Programming Motivation Survey

The Programming Motivation Survey (Appendix E) was given before and after

instruction. It was designed using a combination of intentionally and carefully selected

statements from an existing valid and reliable instrument in addition to researcher-

designed statements. The 25-item Likert type scale Programming Motivation Survey was

adapted from the Science Motivation Questionnaire II (SMQ-II) created by Glynn et al.

(2011). Reliability testing was conducted on the SMQ-II (Glynn et al., 2011) with 340

college student participants. The Cronbach’s alpha of the SMQ-II (Glynn et al., 2011) is

.92, which indicated a very good reliability score (DeVellis, 2003).

The Programming Motivation Survey had five subscales which are displayed in

Table 3.9: (1) Intrinsic Motivation, (2) Career Motivation, (3), Self-Determination, (4)

Self-Efficacy, and (5) Motivation to Integrate Programming into Teaching. The subscale

of grade motivation from Glynn et al.’s (2011) instrument did not fit this study and was

removed. In its place, a researcher-created subscale entitled “Motivation to Integrate

Programming into Teaching” was added, which included five statements. In total, 15 of

20 statements from the SMQ-II’s (Glynn, 2011) subscales of intrinsic motivation, career

motivation, self-determination, and self-efficacy were adapted to focus on programming.

The five statements from the subscales I adapted from the SMQ-II that did not fit the

focus of the study were replaced with researcher-created statements (Appendix F). After

the adaptations were made, the instrument was reviewed by three experts in the fields of

programming and education.

Participants responded to items such as “Understanding programming will benefit

me in my career” on a five-point Likert type scale from (1) strongly disagree, to (5)

strongly agree. As advised by DeVellis (2003), the statements participants responded to

www.manaraa.com

86

were straight-forward in meaning and mixed in random order. Nine demographic

information questions accompanied the Likert scale motivation items. These

demographic questions gave context to the results and provided descriptive statistics on

participants’ age, gender, classification, concentrations within the education major, as

well as previous experience with programming and robotics. Results were analyzed with

either paired sample t-tests or Wilcoxon signed-ranks tests depending on their normality

in order to compare the pre-survey and post-survey sets of data from the same

participants (Mertler, 2017). The Cronbach’s alpha for the Programming Motivation

Survey in pre- (α = .963) and post- (α = .938) surveys indicated a very good reliability

(DeVellis, 2003).

Table 3.9. Programming Motivation Survey Subscale Alignment

Statement Subscale

3. Learning programming is interesting.

17. I am curious about advancing my programming skills.

1. Programming is relevant to my life.

12. Learning programming makes my life more meaningful.

19. I enjoy learning programming.

Intrinsic

Motivation

7. Learning programming will help me get a good job.

13. Understanding programming will benefit me in my career.

10. Knowing programming will give me a career advantage.

25. I will use programming problem-solving skills in my career.

23. My career will involve programming.

Career

Motivation

5. I put enough effort into learning programming.

11. I spend a lot of time learning programming.

6. I use various strategies to learn programming well.

20. I look for additional resources to improve my skills when

learning programming.

16. I concentrate fully on what I do when I work on programming

activities.

Self-

Determination

www.manaraa.com

87

Table 3.9. Programming Motivation Survey Subscale Alignment Continued.

Statement Subscale

9. I am confident I will do well on programming tests.

4. I am confident in learning programming.

15. I believe I can master programming knowledge and skills.

14. I am confident I will do well on programming activities.

24. I can write advanced programs.

Self-Efficacy

22. I can teach programming in my future courses.

21. I enjoy teaching programming to others.

18. I plan to incorporate programming into my teaching.

2. Teaching programming would benefit my students.

8. Programming activities will enhance my students’ learning.

MTIPIT

Field Notes

 I maintained brief field notes during each class session. Field notes have been

described as essential for rigorous qualitative research and offer an extra layer of detail

with which to aid in the construction of thick, rich descriptions (Creswell, 2017; Phillippi

& Lauderdale, 2018). When I was not teaching or providing scaffolding to participants,

observations related to motivation and behavioral engagement (Fredricks et al., 2004;

Kim et al., 2015, 2017; Skinner et al., 2009) were recorded. Examples of such

observations included students voicing excitement and frustration programming the

robots. Teamwork dynamics between partners were also recorded. For example, there

were notes of when one participant within a team was noticeably more engaged with

programming the robot than the other. Special notes were made for participants’

absences, computer issues, and robot malfunctions. These notes were written in a

composition book and coded in Delve and Microsoft Word.

www.manaraa.com

88

Individual Interviews

 Individual interviews were selected as a data collection method because they

provided descriptive qualitative data of participants’ perspectives on focused topics

(Bloomberg & Volpe, 2016; Creswell & Poth, 2018; Mertler, 2017; Mills, 2018).

Interviews, in this instance, gathered participants’ reflections upon their programming

experience throughout the study. This interview data provided further elaboration on

participants’ experiences, which may not appear in my field notes and quantitative survey

data relative to the study’s second research question (Creswell, 2014; Creswell & Poth,

2018).

Purposeful sampling was used to select participants for the interviews. One third

of the participants (n = 6) were purposefully selected for individual interviews about their

experiences within the intervention. Interviewees were selected based on my observations

of participants’ behavioral engagement (Fredricks et al., 2004; Kim et al., 2015, 2017;

Skinner, Kindermann, & Fuller, 2009) that were recorded as field notes. Two participants

representing high, medium, and low behavioral engagement were selected for individual

interviews in order to have a balanced population of interviewees. High behavioral

engagement was exhibited as on-task behavior, deep involvement, and active

participation (Fredricks et al., 2004; Skinner et al., 2009; Stipek, 2002). For example,

Paula demonstrated high engagement in all programming challenges and would actively

contribute toward classroom activities and helping other groups. Medium behavioral

engagement was intermittent, episodic on-task behavior and mild participation (Fredricks

et al., 2004; Skinner et al., 2009; Stipek, 2002). For example, Randy demonstrated

engagement, but with only some of the programming activities. He also demonstrated

www.manaraa.com

89

only mild participation with his partner. Low behavioral engagement was exhibited by

participants who were routinely off task and made minimal contributions to their partner

or the class through participation (Fredricks et al., 2004; Skinner et al., 2009; Stipek,

2002). For example, Jennifer was off-task and did not contribute towards the

programming activities, as she let her partner do almost all the work.

I followed the interview protocol found in Appendix G. The interview questions

were each aligned to the second research question, and as displayed in Table 3.10, 10 of

the interview questions were aligned to the motivation subscales evaluated in the

Programming Motivation Survey, while two were designed to directly gather data with

which to improve the curriculum. In each interview, I prompted the participant with

open-ended questions that guided the discussion. Open-ended questions were used by me

to capture the rich detail of participants’ attitudes and experiences (Creswell, 2017;

Creswell & Poth, 2018; Morgan, 2018). After each question was presented to the

participant, I listened to the participant’s response. The individual interviews followed a

semi-structured protocol (Merriam & Tisdell, 2016; Mertler, 2017). The semi-structured

nature of the interviews allowed the flexibility to put forward additional probes when

appropriate in order to elicit more detail (Creswell, 2017; Mertler, 2017). Each interview

took approximately 30 minutes. The interviews were audio-recorded and transcribed in

real-time using Microsoft Dictate in Microsoft Word. Then, I reviewed the resulting

transcripts for accuracy and made edits as needed. While reviewing the transcriptions,

observations were noted in the researcher journal which helped provide a context in the

analysis and coding of the transcript.

www.manaraa.com

90

Table 3.10. Individual Interview Question Alignment

Individual Interview Questions Alignment

1. What aspects, if anything, interested you in the programming

activities?

Prompt: Can you explain what you found interesting about those

programming activities?

2. Tell me about your experiences with the programming activities

in the course.

Prompt: Which one(s) was(were) most enjoyable? Explain.

Prompt: Which one(s) was(were) least enjoyable? Explain.

Intrinsic

Motivation

Intrinsic

Motivation

3. How do you think learning programming will influence your

career after graduation?

Career

Motivation

4. In what ways do you believe learning programming would be

valuable to you as a teacher?

Prompt: How has your opinion changed since the beginning of this

course?

Career

Motivation

5. Can you tell me about a time when you felt learning

programming was hard?

Prompt: Why did you feel this way?

Prompt: How did you overcome that situation?

6. Tell me about a time you put in extra effort over the past four

weeks to research additional resources to help you during the

programming activities.

Prompt: How did you make the decision to seek additional

resources?

Self-

Determination

Self-

Determination

7. Tell me about your current state of programming knowledge

and skills?

Prompt: How do you think it has changed since the beginning of

this course?

8. What are your feelings on learning even more advanced

programming?

Self-Efficacy

Self-Efficacy

www.manaraa.com

91

Table 3.10. Individual Interview Question Alignment Continued.

Individual Interview Questions Alignment

9. Where do you position yourself in the continuum of adding or

not adding programming activities to your classes? Why?

10. Tell me about your thoughts on how programming activities

would fit into the grade level and subject area you will teach?

Prompt: Describe an example programming activity for the grade

or subject area you will be teaching.

11. Which programming activities do you feel were effective in

helping you learn programming?

Prompt: What suggestions would you make to improve the

programming activities in this course?

MTIPIT

MTIPIT

Perception of the

Curriculum

12. Do you have any questions for me? N.A.

Data Analysis

Quantitative and qualitative data were analyzed (Creswell, 2014; Merriam &

Tisdell, 2016). Using both quantitative and qualitative data removed the biases of only

utilizing one type of data in order to show a more accurate picture of the phenomenon

being investigated (Creswell, 2014; Mertler, 2017). As demonstrated in Table 3.11, each

research question was investigated with different sources of data and different analysis

methods. First, the quantitative and then the qualitative data analysis processes are

described in the following paragraphs.

Table 3.11. Research Questions, Data Sources, and Data Analysis Method Alignment

Research Questions Data Sources Data Analysis Method

RQ#1: What is the effect

of educational robotics

on preservice teachers’

comprehension of

programming concepts?

Programming

Comprehension

Assessment

Descriptive statistics

Paired sample t-tests

Wilcoxon signed-ranks tests

www.manaraa.com

92

Table 3.11. Research Questions, Data Sources, and Data Analysis Method Alignment

Continued.

Research Questions Data Sources Data Analysis Method

RQ#2: How and to what

extent does educational

robotics influence

preservice teachers’

motivation related to

programming?

Programming Motivation

Survey

Field notes

Individual interviews

Descriptive statistics

Paired sample t-tests

Wilcoxon signed-ranks tests

Inductive analysis

Inductive analysis

Quantitative Data Analysis

Student scores on the pre/post Programming Comprehension Assessment

instrument were downloaded from Moodle as Microsoft Excel sheets and formatted for

SPSS. Identification numbers were assigned to each participant. Participants who

dropped out, non-education majors, and their associated data were removed prior to

analysis. The data were uploaded into SPSS for data analysis. The students’ scores on the

Programming Comprehension Assessments were arranged into units for each of the four

topics covered in instruction and compared using paired sample t-tests for the parametric

data and a Wilcoxon signed-ranks tests for the non-parametric data. The paired sample t-

tests and Wilcoxon signed-ranks tests were performed on the data in order to examine

whether the intervention had an impact on students’ Programming Comprehension

Assessment scores. These data were depicted in tables, including the overall scores and

unit categories along. The tables were accompanied by a text description.

 Quantitative data from the pre/post Programming Motivation Survey instrument

were downloaded from Moodle as Microsoft Excel sheets and formatted for SPSS.

Identification numbers were assigned to each participant. Participants who dropped out,

non-education majors, and their associated data were removed prior to analysis. The data

www.manaraa.com

93

were uploaded into SPSS for data analysis. Descriptive statistics were calculated at this

time. Student responses to the Likert scale questions were analyzed within their pre-

determined subscales. Results were analyzed with either paired sample t-tests or a

Wilcoxon signed-ranks test depending on their normality in order to compare the pretest

and posttest sets of data from the same participants (Mertler, 2017). As suggested by

Mertler (2017), an alpha level of .05 was utilized to ascertain if the intervention had a

significant impact on their programming comprehension scores. The Cronbach’s alpha

for this instrument’s pretest (α = .96) and posttest (α = .94) indicated a very good

reliability (DeVellis, 2003).

Qualitative Data Analysis

Inductive analysis was used to analyze the qualitative data (Creswell, 2017;

Mertler, 2017). In this study, qualitative data came from the individual interviews and

field notes. All transcripts and coding files were stored in a password-secured folder. The

transcriptions and field notes were broken down through an inductive system of open

coding in the first cycle, and pattern coding in the second cycle. Strauss and Corbin

(1990) described open coding as “the process of breaking down, examining, comparing,

conceptualizing, and categorizing data” (p. 61). Pattern coding is a second cycle coding

method in which the researcher takes the first cycle codes and groups them into

categories of similar codes (Saldaña, 2016). The pattern codes were then developed into

larger categories (Saldaña, 2016). The data were analyzed for themes in the individual

interviews and field notes (Braun & Clarke, 2006; Creswell, 2017; Mertler, 2017). These

themes centered on representing students’ perceptions about motivation related to

programming and the educational robotics intervention. In this instance, the open coding

www.manaraa.com

94

led to pattern coding, which developed categories that were used to pinpoint themes that

emerged during the data analysis (Bloomberg & Volpe, 2016; Creswell & Poth, 2018;

Mills, 2018).

A coding web tool known as Delve and multiple Microsoft Word documents were

used. As Creswell (2014) recommended, I recorded codes that were expected, surprising,

or interesting related to the research question. Delve was used for the open coding of the

data. Because Delve is limited in the movement and manipulation of open codes into

pattern codes, the open codes were exported as a Microsoft Word document. Open codes

were printed and sorted into pattern codes. Then, the open codes were moved to different

Microsoft Word documents holding the different pattern codes that were generated. In

new Microsoft Word documents, the pattern codes were aligned into umbrella categories.

Then, themes were generated from these categories. The comments feature in Microsoft

Word was used to keep notes on codes and the coding process. From this coding process,

I reduced the qualitative data into a few of the most relevant categories depicting themes

for sharing and further description (Creswell, 2014; Mertler, 2017).

The thematic findings are represented in two different ways. First, a table

depicting the different themes uncovered by the interviews is displayed. Second, thick,

rich description with selected quotes from the individual interviews and field notes were

used to weave together the description of the participants’ experiences relative to

programming motivation. Interpretations of participants’ perspectives were presented to

provide context. Further conversation comparing the results of the data analysis relative

to research question two, followed in a discussion section.

www.manaraa.com

95

Procedures and Timeline

The timeline for the procedures for this research included three phases: (1)

Introduction, (2) Robotics Intervention, and (3) Data Collection and Analysis. As

demonstrated in Table 3.12, the three phases of the study take place over a total of 16

weeks. Each phase is described in the paragraphs below.

Table 3.12. Timeline and Procedures

Phase 1: Introduction (1 week)

Week 1 Getting Started

Class 1 1. Explanation of study

2. Informed consent

3. Pre-Programming Comprehension Assessment and pre-

Programming Motivation Survey

Class 2 1. Computer setup

2. Robot setup

3. Robot operation overview & troubleshooting

Phase 2: Robotics Intervention (4 weeks)

Week 2 Basic Procedures

Class 1 1. Basic Procedures programming demonstration

2. Free time to experiment with programming robots

Class 2 1. Odometry Activity

2. One Meter Challenge

Week 3 Advanced Procedures

Class 1 1. Pseudocoding lap demonstration

2. Lap Activity

Class 2 1. Pseudocoding maze demonstration

2. Maze Challenge

Week 4 Control Structures

Class 1 1. Looping demonstration

2. Slithering One Meter Activity

Class 2 1. Flow control overview

2. Lap Loop Challenge

Week 5 Variables

Class 1 1. Color sensor demonstration

2. Red Light Activity

Class 2 1. Variables overview

2. Maze with Variables Challenge

Phase 3: Data Collection & Analysis (11 weeks)

Week 6 Data Gathering

www.manaraa.com

96

Table 3.12. Timeline and Procedures Continued.

Phase 1: Introduction

There were actions that were completed before the study began. Institutional

Review Board approval was gained from both my associated university (Appendix H)

and the research site (Appendix I). Before the study began, steps were completed to

prepare the participants for the study. The week before the Robotics Intervention phase

began, there were two class periods dedicated to preparing the participants for the

robotics lessons. The events of these two class periods will be described in this section.

First, students were briefed on the study. In this briefing, the purpose of the study,

procedures of the study, duration of the study, rights of participants, risks to participants,

benefits to participants, confidentiality, and sharing of results were explained to students.

Students were given time to ask questions and reflect upon their decision to participate or

Class 1 1. Post-Programming Comprehension Assessment and post-

Programming Motivation Survey

Class 2 2. Individual interviews

Week 7 & 8 Interview Transcripts - Initial Analysis

Independent 1. Review interview audio with transcripts for accuracy

2. Review transcripts’ contents

3. Member checking of transcripts

Week 9 & 10 Comprehension Assessment Analysis

Independent 1. Prepare data for SPSS

2. Paired sample t-tests and Wilcoxon signed-ranks tests on

comprehension data

3. Reliability analysis

Week 11 & 12 Motivation Survey Analysis

Independent 1. Prepare data for SPSS

2. Paired sample t-tests and Wilcoxon signed-ranks tests on

motivation data

3. Reliability analysis

Week 13 – 16 Coding of Qualitative Data

Independent 1. Rounds of coding and peer debriefing

2. Categories and themes

www.manaraa.com

97

not. It was explained to students that participating or not participating in this study would

not influence their grades, and that participation was optional. At the conclusion of this

introduction, informed consent was obtained from the participants. Students were given

the research site university’s consent form and photography, video, and audio recording

release form (Appendix J). Participants signed these two forms, and the forms were

collected by me and stored in a secure location. The pretest Programming

Comprehension Assessment and the pre-instructional Programming Motivation Survey

were given to participants. To access these instruments, participants logged into the

course webpage in Moodle and navigated down to the associated week. There

participants found the Programming Comprehension Assessment pretest and pre-

instructional Programming Motivation Survey. Participants completed the pretest first,

followed immediately by the pre-instructional survey.

During the next class period, participants were familiarized with the robots and

programming software. Participants were paired and given a robot and laptop. Then, the

pairs followed the instructor through the process of how participants were to connect the

laptop to the robot using Bluetooth. Then, the instructor described the different parts of

the robots. The instructor showed students the different motors and sensors of the robots

in a presentation. The functions of each type of motor and sensor were explained.

Instructional time was dedicated to showing the participants how to freeze the robot in

situations where the robot goes awry. Then, participants were shown how to troubleshoot

problems that may occur with the robots. To finish this class period, the instructor

showed participants the different sections of the programming software. Participants

followed along with the instructor on their laptops. The instructor demonstrated the

www.manaraa.com

98

programming canvas, the programming palettes, and the hardware tab. This basic

overview concluded the first week’s activities.

Phase 2: Robotics Intervention

Phase 2 was divided into four week-long units. Each week/unit contained two

class periods of 1.25 hours for a total of 2.50 hours of instructional time per week/unit.

The basic structure of each unit was the same. Each unit began with an instructor-led

overview of the concepts in the unit, including context and curricular integration ideas,

and taught participants robotics programming concepts. Participants then practiced the

new programming concepts through learning activities. Finally, participants completed

programming challenges to finish each unit.

Participants began with the Basic Procedures unit. The first class of this unit

consisted of a basic overview of programming and a programming demonstration. After

that, participants had free time to experiment with programming the robots. In the second

class of the unit, participants took part in an odometry learning activity and then the One

Meter Challenge. Next, participants moved on to the Advanced Procedures unit. The first

class of this unit consisted of a pseudocoding demonstration and the Lap Activity. The

second class of this unit began with a pseudocoding activity for following a path and

ended with the Maze Challenge. Then, participants took part in the Control Structures

unit. The first class of this unit started with a looping demonstration and ended with the

Slithering One Meter Activity. The second class of this unit started with a control

structures overview which explained loops and if/then statements and ended with the Lap

Loop Challenge. Finally, participants completed the Variables unit. The first class of this

unit began with a color sensor demonstration and ended with the Red Light Activity. The

www.manaraa.com

99

second class of this unit began with an overview of variables and ended in the Maze with

Variables Challenge.

Phase 3: Data Collection and Analysis

In the first part of this phase, participants took the same Programming

Comprehension Assessment and then the Programming Motivation Survey that they had

taken previously. The instruments were again available in Moodle, the participants’

course management system. The next part of this phase required me to obtain qualitative

data through individual interviews. The audio from each of these recordings was

transcribed with Microsoft Dictate and loaded into Microsoft Word. The cleaned

transcripts were shared with the interviewees for member checking. The transcripts were

then reviewed by me in order to become familiarized with the content. The transcripts

along with the field notes were then uploaded into Delve for coding and inductive

analysis. Descriptive statistics, paired sample t-tests, and Wilcoxon signed-ranks tests

were then performed on the pre/post results of each instrument. The transcripts were

coded, and themes were gathered from the data. Finally, participants had the opportunity

to critique the findings of this study.

Rigor and Trustworthiness

Researchers must communicate the actions they have taken to assert the rigor and

trustworthiness of their findings (Creswell, 2014). There were five strategies employed

by me to ensure the rigor and trustworthiness of the qualitative data in this study. The

strategies that were used to confirm rigor and trustworthiness in this study are (1)

triangulation, (2) member checking, (3) peer debriefing, (4) audit trail, and (5) thick, rich

description. These strategies are detailed in the following paragraphs.

www.manaraa.com

100

Triangulation

Methodological triangulation is the most evident strategy used to ensure rigor and

trustworthiness for this study. Methodological triangulation united data from mixed

sources and methods (Buss & Zambo, 2014; Creswell, 2014; Patton, 2002). The mixing

of quantitative survey data on motivation, qualitative field notes, and qualitative

individual interview response data about motivation constituted the mixed methods for

research question #2. These mixed sources created a dialogue between the different

perspectives offered through the disparate ways of investigating the phenomenon

(Maxwell, 2010). After all data were collected and the data sources were analyzed

individually, these results were then compared to corroborate findings from each different

methodology, ensuring consistency (Bazeley, 2013; Creswell, 2014).

Member Checking

As this study was conducted through the scope of action research, a collaborative

member checking process was used. Multiple rounds of member checking were used in

this study. Member checking ensures trustworthiness by allowing stakeholders to verify

the accuracy of the findings (Creswell, 2014; Merriam, 1998; Mertler, 2017). The first

member checking occurred after the individual interviews. Participants were presented

with the transcripts of their individual interviews through email. Each email was kept on

a separate email chain for each participant as to preserve anonymity. I inquired if the

transcripts were reflective of what the participants meant during the individual

interviews. Participants had the opportunity to critique or correct me during this time to

further establish the trustworthiness of the results (McMillan, 2016; Mills, 2018). No

inaccuracies were reported by participants, and three of the six interviewees confirmed

www.manaraa.com

101

their transcripts’ accuracy, while the other three did not respond. The themes and

categories created were then shared with the participants after the data were coded and

analyzed. Again, participants were asked to critique or correct the themes and categories.

The accuracy of the themes and categories was confirmed by three of the six

interviewees, but no additional insights were provided. The other three interviewees did

not respond.

Peer Debriefing

Peer debriefing has been described by Lincoln and Guba (1985) as a discussion

with the goal of examining the methodological process, exploring unrealized possibilities

in the study, as well as checking and defending the study’s findings or interpretations.

According to Shenton (2004), peer debriefing with other academics offers “the fresh

perspective that such individuals may be able to bring” which can “challenge

assumptions made by the investigator” who may become too close to the subject matter

to see opportunities for the study’s refinement (p. 67). Creswell (2014) echoed this notion

by explaining that including the perspectives of other academics to review a study acts as

an external evaluation on the rigor and trustworthiness of the methods and interpretations

of results. Peer debriefing with my dissertation chair was used to ensure all methods were

fundamentally sound, and all interpretations were justified and accurate. Throughout the

study, instruments, data, codes, themes, and interpretations were constantly shared and

reviewed with the dissertation chair. From peer debriefing insights, the study was refined,

and the accuracy of results were improved, adding credibility to the results (Bloomberg &

Volpe, 2016; McMillan, 2016).

www.manaraa.com

102

Audit Trail

The audit trail in this study consisted of a researcher journal that documented both

reflections from the intervention as well as decisions that were made during the data

analysis process (Creswell, 2017). An audit trail was used to document an ongoing record

of events and decisions which occurred during the study and analysis (Lincoln & Guba,

1985; Merriam, 1998). The researcher journal provided a linear timeline of thoughts and

events germane to the intervention and data analysis aspects of the study. The insights

within my field notes on each class session were incorporated into the researcher journal

and elaborated upon. In addition, reflections on the lessons and summarizations of

experiences were written immediately following each class session. These passages were

used to provide context when reporting the results of the study. Further, I used the

researcher journal to remember what was previously done and what needed to be done

while working through the data analysis phase. For example, I made notes about which

codes were used and why during the thematic analysis of the interview data. In this way, I

ensured that there was a written record that supported the thought process behind each

code. In turn, these thought processes and decisions could be shared in the dissertation.

The researcher journal was an ongoing document written in Microsoft Word.

Thick, Rich Description

Thick, rich descriptions were detailed, illustrative accounts that enabled the reader

to better understand the study (Bazeley, 2013; Creswell, 2014; Mertler, 2017). These

detailed descriptions allowed the reader to make analyses and begin to draw conclusions

(Lincoln & Guba, 1985; Merriam, 1998). In this study, interview responses as well as

field notes explaining the phenomena were described and interpreted. The perspectives of

www.manaraa.com

103

the participants were woven into the thick, rich description to add authenticity and

support to my inferences. These thick, rich descriptions of the study provided context to

the reader.

Plan for Sharing

The results of this study were shared with various audiences. In each of the

methods of sharing, copies of the quantitative and qualitative data that were included in

each presentation or report were devoid of any identifying characteristics. Information

was reported in aggregate, and student pseudonyms in the form of study-specific

identification numbers were used for specific examples in order to “limit descriptions of

individuals” to the point that “they are not easily identifiable” (Mertler, 2017, p. 271).

The results of this study were presented to (a) the study’s participants, (b) the university’s

Instructional Technology department, (c) readers of peer-reviewed journals, and (d)

attendees of international and national professional conferences. The methods for sharing

findings with each of these audiences will be described in the paragraphs below.

Participants

The results of the study were shared with participants through a visual

presentation given by me. This presentation occurred after the member checking of the

themes of the study. Participants were given the opportunity to comment on the findings

in accordance with the action research model wherein participants are collaborators

(Creswell, 2014; Mertler, 2017). All questions were answered, and reflections were made

during this time.

www.manaraa.com

104

The University’s Instructional Technology Department

The professional stakeholders that are part of the Instructional Technology

department all met in the Instructional Technology meeting area. I provided a visual

presentation as well as a hard-copy report of the study to the department. This report

included an outline of the study’s instructional modules, data, findings, as well as a list of

suggested updates and improvements. All professional stakeholders collaborated on

brainstorming additional updates and improvements to the programming instruction and

documented action steps for updating the instructional modules.

Readers of Peer-Reviewed Journals

Articles related to this study’s research questions will be written. These articles

will be derivative of the dissertation’s contents. I will segment the dissertation into

different pieces to report the results. Potential journals will be selected based on the

advisement of my chair. Although action research is not widely generalizable, the

findings of this dissertation will help add to the scarce literature available to academics

and practitioners related to preservice teachers learning programming through robotics.

Attendees of Professional Conferences

The results of this study will also be shared at educational technology

conferences. A presentation of selected findings is planned for an international

conference within the year of the dissertation’s successful defense. Other international

and national presentations will be planned upon successful defense at the

recommendation of my chair.

www.manaraa.com

105

CHAPTER 4

 ANALYSIS AND FINDINGS

The purpose of this action research was to evaluate the effect of educational

robotics on the programming comprehension and motivation of preservice teachers at a

medium-sized liberal arts university in the southeastern United States. The findings from

this study will aid in understanding the impact of educational robotics on preservice

teachers’ comprehension and motivation related to programming before they begin their

professional practice. The data collection in this study was aligned to two research

questions:

1. What is the effect of educational robotics on preservice teachers’ comprehension

of programming concepts?

2. How and to what extent does educational robotics influence preservice teachers’

motivation related to programming?

This chapter provides evidence of comprehension and motivation that were

gathered from participants during data collection. Of the eligible 21 education majors

taking the course, three participants dropped out of the class during the study. These

participants’ data were removed prior to analysis. This analysis only included the pre/post

Programming Comprehension Assessment and Programming Motivation Survey data

from the remaining 18 participants.

This chapter is divided into two sections representing the mixed methods used in

this study. The quantitative section reports the pre/post results of the Programming

www.manaraa.com

106

Comprehension Assessment and the Programming Motivation Survey as well as

subsequent data analysis on the participants’ responses. The qualitative section

documents the findings based on the analysis of the individual interviews. The

quantitative results will be reported first in this chapter, followed by the qualitative

results. At the end, those two sources of findings will be integrated.

Quantitative Analysis and Findings

This section provides the quantitative results from the instruments utilized in this

study. Data were collected before and after the educational robotics intervention using

two instruments: (1) Programming Comprehension Assessment and (2) the Programming

Motivation Survey. The data presented in this section include participants’ overall pre

and post results as well as the data for each respective unit or subscale within each

instrument. First, the pre/post Programming Comprehension Assessment results will be

presented, followed by the pre/post Programming Motivation Survey results.

Programming Comprehension Assessment

The Programming Comprehension Assessment was given to participants before

and after the educational robotics programming intervention. The instrument was

evaluated by two experts in block-based programming and educational robotics to

establish face validity (Salkind, 2010). The Programming Comprehension Assessment

included 20 multiple choice questions grouped into four units of five questions

representing each of the instructional units in the intervention (Basic Procedures,

Advanced Procedures, Control Structures, and Variables). Each multiple-choice question

had five answer choices. There was only one correct answer per question. Each question

www.manaraa.com

107

had one point possible for a total possible score of 20 points. Each unit had a total

possible score of five points.

Descriptive statistics. First, the data were analyzed using descriptive statistics,

and an item difficulty analysis was run based on the participants’ average scores on the

Programming Comprehension Assessment. From the pretest (M = .21, SD = .07) to the

posttest (M = .58, SD = .24), participants’ overall programming comprehension

improved.

An item difficulty analysis, shown in Table 4.1, displays the difficulty of each

question on the Programming Comprehension Assessment. Difficulty index values were

calculated. Item difficulty levels in this study were equal to the percentage of participants

who answered the items correctly, or the items’ mean scores (Lord, 1952). Difficulty

index values varied between .22 and .83, resulting in a mean difficulty index calculation

of M = .58. According to Lord (1952), the difficulty for a five-response option multiple

choice question with one correct answer choice is ideally .70. Hopkins and Antes (1990)

noted that difficulty levels below .14 were very difficult, levels between .15 and .29 were

difficult, levels between .30 to .70 were moderate, levels between .71 to .85 were easy,

and levels from .86 and above were very easy. According to Hopkins and Antes’s (1990)

difficulty levels, the Programming Comprehension Assessment included two difficult

questions, 12 moderate questions, and six easy questions, with an overall moderate

difficulty level (M = .58, SD = .24). In Table 4.1, the item difficulty and unit difficulty

levels are equal to the means outlined.

www.manaraa.com

108

Table 4.1. Item Difficulty – Programming Comprehension Assessment Posttest

Units Question M SD

Basic Procedures

Q1 .83 .38

Q2 .44 .51

Q3 .83 .38

Q4 .28 .46

Q5 .56 .51

 Basic Procedures Total .59 .49

Advanced Procedures

Q6 .56 .51

Q7 .78 .43

Q8 .56 .51

 Q9 .67 .49

 Q10 .72 .46

 Advanced Procedures Total .66 .48

Control Structures

Q11 .39 .50

Q12 .72 .46

Q13 .50 .51

Q14 .44 .51

Q15 .83 .38

 Control Structures Total .58 .57

Variables

Q16 .61 .50

Q17 .61 .50

Q18 .44 .51

Q19 .67 .49

Q20 .22 .43

 Variables Total .51 .49

Total Programming Comprehension Assessment Difficulty .58 .24

Note. Mean is equal to item difficulty.

Participants’ scores in each of the units in the assessment representing the four

different instructional units (Basic Procedures, Advanced Procedures, Control Structures,

and Variables), as well as the total scores, were analyzed for the pretest and posttest.

First, the Shapiro-Wilk test was used to evaluate the normality of the data. Based on

those results, a paired sample t-test or a Wilcoxon signed-ranks test was used to analyze

the data, respectively.

www.manaraa.com

109

Shapiro-Wilk normality tests. The Shapiro-Wilk test was used to determine if

the data were normally distributed for each unit as well as the total scores. To complete

the Shapiro-Wilk tests, the participants’ pre and post average scores for each unit and

overall total were calculated. Then, the differences between the pretest and posttest for

each unit, as well as the overall total for the pretest and posttest, were calculated to create

a new variable that represented the difference in scores between the pre and posttest.

These differences were then analyzed using Shapiro-Wilk tests.

Shapiro-Wilk test results with p values above .05 indicated that the data are

normally distributed, while p values under .05 indicated that the data are not normally

distributed (Gibbons & Chakraborti, 2011). The data (see Table 4.2) were found to be

normally distributed for the units of Control Structures (p = .212) and Variables (p =

.534), as well as the Total (p = .143) using the Shapiro-Wilk tests (p > .05). However, the

units of Basic Procedures (p = .017) and Advanced Procedures (p = .042) were found to

violate the normality assumption.

Table 4.2. Shapiro-Wilk Normality Tests – Programming Comprehension Assessment

Units W df p

Basic Procedures Difference .87 18 .017*

Advanced Procedures Difference .89 18 .042*

Control Structures Difference .93 18 .212

Variables Difference .96 18 .534

Total Programming Comprehension Assessment Difference .92 18 .143

Note. * Indicates not normally distributed data (p < .05)

The next steps of the data analysis process were guided by the Shapiro-Wilk test

results. Either the paired sample t-test or Wilcoxon signed-ranks test were used to analyze

www.manaraa.com

110

the data depending on their normality results from the Shapiro-Wilk test, as outlined in

Table 4.3. The data for the units and total that were normally distributed were analyzed

using paired sample t-tests and the data for the units that were not normally distributed

were analyzed using Wilcoxon signed-ranks tests (Gibbons & Chakraborti; Pappas &

DuPuy, 2004). Cohen’s d was calculated to determine the effect size for the change in

each unit for the parametric data (Cohen, 1988). The effect size of the change in the non-

parametric test was reflected by the correlation coefficient r (Pallant, 2007; Rosenthal,

1994). To minimize familywise Type 1 error inflation, the Bonferroni correction (Bland

& Altman, 1995) level was calculated for the total number of tests conducted on the

instrument (5).

Table 4.3. Data Analysis Method Alignment Based on Normality of Data – Programming

Comprehension Assessment

Shapiro-Wilk Test Results Units Data Analysis

Method

Normally Distributed Control Structures

Variables

Total Programming Comprehension

Paired sample t-test

Not Normally Distributed

Basic Procedures

Advanced Procedures

Wilcoxon signed-

ranks test

Paired sample t-tests. Paired sample t-tests were conducted to compare

participants’ scores on the Control Structures, Variables, and Total between pretest and

posttest. The paired sample t-tests revealed that participants’ posttest scores were

significantly higher than pretest scores. Participants’ comprehension of programming

concepts increased from the pretest (M = .21, SD = .07) to the posttest (M = .58, SD =

.24), t(17) = 6.48, p < .001, Cohen’s d = 1.53. Participants’ comprehension of control

www.manaraa.com

111

structures increased from the pretest (M = .26, SD = .17) to the posttest (M = .58, SD =

.26), t(17) = 4.68, p < .001, Cohen’s d = 1.10. Participants’ comprehension of variables

increased from the pretest (M = .19, SD = .17) to the posttest (M = .51, SD = .32), t(17) =

3.69, p < .001, Cohen’s d = .87.

As demonstrated in Table 4.4, the overall increase in students’ total scores on the

assessment from pretest to posttest was found to be statistically significant. The units of

Control Structures and Variables also demonstrated significant increases from pretest to

posttest. As demonstrated in Table 4.4, the effect size for this analysis was found to

exceed Cohen’s (1988) convention for a large effect (d = .80) for these units in addition

to the total. To minimize familywise Type 1 error inflation, the Bonferroni correction

(Bland & Altman, 1995) level was calculated by dividing the desired alpha level of .05

by total number of comparisons (5) to reveal a new significance threshold of p < .01.

Both subscales and the total remained significant at the Bonferroni correction alpha level.

Specifically, the results suggest that when preservice teachers learn programming through

educational robotics, their comprehension of control structures, variables, and

programming in general can be increased.

Table 4.4. Paired Sample t-Tests – Programming Comprehension Assessment Averages

 Pretest Posttest

Units M SD M SD t df p d

Control Structures .26 .17 .58 .26 4.68 17 < .001*† 1.10

Variables .19 .17 .51 .32 3.69 17 .002*† 0.87

Total Programming

Comprehension

.21 .07 .58 .24 6.48 17 < .001*† 1.53

Note. Units were out of five questions. The total was out of 20.

* Indicates the differences between pretest and posttest is significant p < .05.

† Indicates the differences between pretest and posttest is significant at Bonferroni

correction level p < .01.

www.manaraa.com

112

Wilcoxon signed-ranks tests. The data that were not normally distributed for the

units of Basic Procedures and Advanced Procedures were analyzed using Wilcoxon

signed-ranks tests. The Wilcoxon signed-ranks tests were used to produce valid non-

parametric results because it is a superior analysis method for data that are non-normal in

distribution (Pappas & DePuy, 2004). To complete the Wilcoxon signed-ranks tests,

students’ average scores for each unit in addition to their average overall scores were

calculated for the pretest and posttest. The average scores for each unit as well as the

average total scores were then compared using Wilcoxon signed-ranks tests. According to

Pallant (2007) and Rosenthal (1994), the effect size for Wilcoxon signed-ranks tests can

be calculated by dividing the Z value by the root of the total N observations resulting in

the correlation coefficient r. The resulting statistics are displayed in Table 4.5. The

medians of Basic Procedures pretest and posttest were .20 and .70, respectively. A

Wilcoxon signed-ranks test indicated that that there was a statistically significant effect in

Basic Procedures (Z = -3.30, p = .001, r = -.55). The medians of the pretest Advanced

Procedures and posttest Advanced Procedures were .20 and .70, respectively. A

Wilcoxon signed-ranks test indicated that that there was a statistically significant effect in

Advanced Procedures (Z = -3.43, p = .001, r = -.57). The effect size below -.50 indicated

a large effect size (Cohen, 1992). To minimize familywise Type 1 error inflation, the

Bonferroni correction (Bland & Altman, 1995) level was calculated by dividing the

desired alpha level of .05 by total number of comparisons (5) to reveal a new significance

threshold of p < .01. Both subscales remained significant at the Bonferroni correction

alpha level. Specifically, the results suggest that when preservice teachers learn

www.manaraa.com

113

programming through educational robotics, their comprehension of basic and advanced

concepts can be increased.

Table 4.5. Wilcoxon Signed-Ranks Tests – Programming Comprehension Assessment

Averages

 Pretest Posttest

Units Mdn. SD Mdn. SD Z p r

Basic Procedures .20 .15 .70 .29 -3.30 .001*† -.55

Advanced Procedures .20 .18 .70 .30 -3.43 .001*† -.57

Note. Units were out of five questions.

* Indicates the differences between pretest and posttest is significant p < .05.

† Indicates the differences between pretest and posttest is significant at Bonferroni

correction level p < .01.

Programming Motivation Survey

The Programming Motivation Survey was given to participants before and after

the robotics programming intervention. The Programming Motivation Survey included 25

five-point Likert scale questions grouped into five subscales of five questions

representing each subscale examined in this study (Intrinsic Motivation, Career

Motivation, Self-Determination, Self-Efficacy, MTIPIT). Each Likert scale question

asked participants to indicate their level of agreement with a statement from 1 (strongly

disagree) to 5 (strongly agree). Both the pretest and posttest Programming Motivation

Survey were tested for reliability (N = 18). According to DeVellis (2003), a Cronbach’s

alpha coefficient below .60 is unacceptable, .60 to .69 is undesirable, .70 to .80 is

respectable, and .80 and above is very good. The Cronbach’s alpha for this instrument’s

pretest (α = .96) and posttest (α = .94) indicated very good reliability (DeVellis, 2003).

The reliabilities of each of the instrument’s subscales were also tested, as shown in Table

www.manaraa.com

114

4.6. The range of Cronbach’s alpha levels for these ranged from .80 to .90, which also

indicated very good reliability (DeVellis, 2003).

Table 4.6. Cronbach’s Alpha Reliability – Programming Motivation Survey

Subscales Pretest α Posttest α

Intrinsic Motivation .89 .89

Career Motivation .88 .80

Self-Determination .90 .89

Self-Efficacy .85 .87

MTIPIT .89 .81

Total Programming Motivation .96 .94

Descriptive statistics. First, descriptive statistics about the programming

motivation survey were presented in Table 4.7. From the pre-survey (M = 2.38, SD = .84)

to the post-survey (M = 3.48, SD = .64), participants’ overall mean motivation improved.

The subscale with the largest increase was Self-Determination in which participants’

mean motivation improved 28% between pretest and posttest.

Table 4.7. Descriptive Statistics – Programming Motivation Survey

Subscales M SD

Intrinsic Motivation

Pre-survey 2.23 0.93

Post-survey 3.11 0.96

Difference 1.12 0.03

Career Motivation Pre-survey 2.94 0.98

Post-survey 3.72 0.59

Difference .78 0.39

Self-Determination Pre-survey 1.99 0.98

 Post-survey 3.39 0.72

Difference 1.41 0.26

Self-Efficacy Pre-survey 2.17 0.82

 Post-survey 3.47 0.84

Difference 1.30 0.03

www.manaraa.com

115

Table 4.7. Descriptive Statistics – Programming Motivation Survey Continued.

Subscales M SD

MTIPIT Pre-survey 2.59 1.04

Post-survey 3.72 0.75

Difference 1.13 0.29

Total Programming Motivation Pre-survey 2.38 0.84

Post-survey 3.48 0.64

Difference 1.10 0.20

Note. Out of five-point Likert scale.

Students’ responses in each of the subscales in the survey (Intrinsic Motivation,

Career Motivation, Self-Determination, Self-Efficacy, MTIPIT), as well as the totals,

were analyzed from the pre-survey and post-survey. The Programming Motivation

Survey data were analyzed for normality, and then one of two tests was used to evaluate

if the intervention’s results indicated an increase in motivation related to programming.

In the same process outlined earlier in this chapter, first, Shapiro-Wilk tests were used to

evaluate the normality of the data. From there, either the paired sample t-test or Wilcoxon

signed-ranks test was used depending on the results of the Shapiro-Wilk tests.

Shapiro-Wilk normality tests. The Shapiro-Wilk test was used to determine if

the data were normally distributed for each subscale as well as the total. To complete the

Shapiro-Wilk tests, the participants’ pre-survey and post-survey Likert scale averages for

each subscale as well as the total were calculated. Then, the differences between the

Likert scale averages for each subscale as well as the total from the pre-survey and post-

survey were found to create a new variable that represented the difference in Likert scale

averages between the pre-survey and post-survey. These differences, shown in Table 4.8,

were then analyzed using Shapiro-Wilk tests.

www.manaraa.com

116

The data were found to be normally distributed for the Total (p = .796) as well as

the subscales of Intrinsic Motivation (p = .353), Self-Determination (p = .155), Self-

Efficacy (p = .814), and MTIPIT (p = .974) using Shapiro-Wilk tests (p > .05). However,

the subscale of Career Motivation (p = .045) was found to not be normally distributed.

Therefore, as demonstrated in Table 4.8, the null hypothesis was retained for Intrinsic

Motivation, Self-Determination, Self-Efficacy, MTIPIT, and Total while the null

hypothesis was rejected for Career Motivation.

Table 4.8. Shapiro-Wilk Normality Tests – Programming Motivation Survey

Subscales W df p

Intrinsic Motivation Difference .95 18 .353

Career Motivation Difference .89 18 .045*

Self-Determination Difference .92 18 .155

Self-Efficacy Difference .97 18 .814

MTIPIT Difference .98 18 .974

Total Programming Motivation Difference .97 18 .796

Note. * Indicates not normally distributed data (p < .05).

The next steps of the data analysis process were guided by the Shapiro-Wilk test

results. Either the paired sample t-test or Wilcoxon signed-ranks test were used to analyze

the data depending on their normality results from the Shapiro-Wilk test, as outlined in

Table 4.9. The data for the subscales and total that were normally distributed were

analyzed using the paired sample t-test, and the data for the subscales that were not

normally distributed were analyzed using the Wilcoxon signed-ranks test (Gibbons &

Chakraborti; Pappas & DuPuy, 2004). Cohen’s d was calculated to determine the effect

size for the change in each unit for the parametric data (Cohen, 1988). The effect size of

the change in the non-parametric test was reflected by the correlation coefficient r

www.manaraa.com

117

(Pallant, 2007; Rosenthal, 1994). To minimize familywise Type 1 error inflation, the

Bonferroni correction (Bland & Altman, 1995) level was calculated by dividing the

desired alpha level of .05 by the total number of comparisons (6) on the instrument’s data

to reveal a new significance of p < .008.

Table 4.9. Data Analysis Method Alignment Based on Normality of Data – Programming

Motivation Survey

Shapiro-Wilk Test Results Subscales Data Analysis Method

Normally Distributed Intrinsic Motivation

Self-Determination

Self-Efficacy

MTIPIT

Total Programming Motivation

Paired sample t-test

Not Normally Distributed Career Motivation Wilcoxon signed-ranks

test

Paired sample t-tests. Paired sample t-tests were conducted to compare

participants’ survey responses on the pre-survey and post-survey for the normally

distributed subscales of Intrinsic Motivation, Self-Determination, Self-Efficacy, MTIPIT,

and the normally distributed Total. To complete the paired sample t-tests, participants’

average Likert scale agreement levels for each subscale as well as their total results, were

calculated on the pre-survey and post-survey. The changes in each of the subscales as

well as the overall total were then compared using the paired sample t-tests.

The paired samples t-tests revealed that participants’ posttest scores were

significantly higher than pretest scores. Participants’ overall programming motivation

increased from the pre-survey (M = 2.38, SD = 0.84) to the post-survey (M = 3.48, SD =

0.64), t(17) = 6.10, p < .001, Cohen’s d = 1.44. Participants’ intrinsic motivation

www.manaraa.com

118

increased from the pre-survey (M = 2.23, SD = 0.93) to the post-survey (M = 3.11, SD =

0.96), t(17) = 4.26, p = .001, Cohen’s d = 1.00. Participants’ self-determination increased

from the pre-survey (M = 1.99, SD = 0.98) to the post-survey (M = 3.39, SD = 0.72), t(17)

= 7.07, p < .001, Cohen’s d = 1.67. Participants’ self-efficacy increased from the pre-

survey (M = 2.17, SD = 0.82) to the post-survey (M = 3.47, SD = 0.84), t(17) = 5.75, p <

.001, Cohen’s d = 1.36. Participants’ MTIPIT increased from the pre-survey (M = 2.59,

SD = 1.04) to the post-survey (M = 3.72, SD = 0.75), t(17) = 6.10, p < .001, Cohen’s d =

1.20.

As demonstrated in Table 4.10, the overall increase in students’ total

programming motivation on the survey from pre-survey to post-survey was found to be

statistically significant with the paired sample t-test t(17) = 6.10, p < .05. Intrinsic

Motivation t(17) = 4.26, p = .001, Self-Determination t(17) = 7.07, p < .001, Self-

Efficacy t(17) = 5.75, p < .001, and MTIPIT t(17) = 5.09, p < .001 also demonstrated

significant increases from pre to post. These results suggest that educational robotics did

have an impact on preservice teachers’ programming motivation. Specifically, the results

suggest that when preservice teachers learn programming through educational robotics,

their programming motivation can be increased. As demonstrated in Table 4.10, the

effect size for this analysis was found to exceed Cohen’s (1988) convention for a large

effect (d = .80) for these subscales in addition to the total. All the subscales and the total

were found to be significant at the Bonferroni correction level of p < .008.

www.manaraa.com

119

Table 4.10. Paired Sample t-Tests – Programming Motivation Survey Likert Scale

Agreement

 Pretest Posttest

Subscales M SD M SD t df p d

Intrinsic Motivation 2.23 0.93 3.11 0.96 4.26 17 .001*† 1.00

Self-Determination 1.99 0.98 3.39 0.72 7.07 17 < .001*† 1.67

Self-Efficacy 2.17 0.82 3.47 0.84 5.75 17 < .001*† 1.36

MTIPIT 2.59 1.04 3.72 0.75 5.09 17 < .001*† 1.20

Total Programming

Motivation

2.38 0.84 3.48 0.64 6.10 17 < .001*† 1.44

Note. Out of five-point Likert scale.

* Indicates the differences between pre-survey and post-survey is significant p < .05.

† Indicates the differences between pre-survey and post-survey is significant at

Bonferroni correction level p < .008.

Wilcoxon signed-ranks test. The data that were not distributed normally for the

subscale of Career Motivation were analyzed using the Wilcoxon signed-ranks test. To

complete the Wilcoxon signed-ranks test, students’ average Likert scale agreement levels

for the Career Motivation subscale was calculated for the pre-survey and post-survey.

The motivation levels were then compared using the Wilcoxon signed-ranks test. The

correlation coefficient r was calculated to represent the effect size (Pallant, 2007;

Rosenthal, 1994). The resulting statistics are displayed in Table 4.11. The medians of

pre/post Career Motivation were 3 and 3.72, respectively. A Wilcoxon signed-ranks test

indicated that there was a statistically significant effect in Career Motivation (Z = -3.58, p

< .001, r = -.6). The effect size below -.50 indicated a large effect size (Cohen, 1992).

The subscale was found to be significant at the Bonferroni correction level of p < .008.

These results suggest that educational robotics positively impact preservice teachers’

Career Motivation related to programming. Specifically, the results suggest that when

preservice teachers learn programming through educational robotics, their Career

Motivation related to programming can be increased.

www.manaraa.com

120

Table 4.11. Wilcoxon Signed-Ranks Test – Programming Motivation Survey

 Pre-survey Post-survey

Subscales Mdn. SD Mdn. SD Z p r

Career Motivation 3 0.98 3.72 0.59 -3.58 < .001*† -.6

Note. Out of five-point Likert scale.

* Indicates the differences between pre-survey and post-survey is significant p < .05.

† Indicates the differences between pre-survey and post-survey is significant at

Bonferroni correction level p < .008.

To summarize, the Programming Comprehension Assessment and Programming

Motivation Survey were analyzed based on their associated subscales using either a

paired sample t-test or a Wilcoxon signed-ranks test depending on their normality results

on Shapiro-Wilk tests. Programming Comprehension Assessment data showed that

participants’ posttest scores on all subscales and the total were significantly higher than

their pretest scores. All subscales and totals on the Programming Comprehension

Assessment were found to have a large effect size (Cohen, 1988; Field, 2009; Pallant,

2007; Rosenthal, 1994). Programming Motivation Survey data showed that participants’

post-survey agreement levels on all subscales and the total were significantly higher than

their pre-survey agreement levels. All subscales and totals on the Programming

Motivation Survey were found to have a large effect size (Cohen, 1988; Field, 2009;

Pallant, 2007; Rosenthal, 1994).

Qualitative Findings and Interpretations

This study utilized two different origins of qualitative data: field notes and

individual interviews. This section covers the analysis of (1) field notes, and (2)

individual interviews.

www.manaraa.com

121

Field Notes

Field notes were written in-situ when possible during the instruction and

immediately after teaching the instructional units. Field notes were used to provide thick,

rich descriptions and inform the selection of the individual interview participants

(Creswell, 2017; Phillippi & Lauderdale, 2018). To maintain an audit trail (Creswell,

2017), a linear timeline of thoughts and events that were part of the intervention was kept

in a researcher journal. My field notes on each class session were incorporated into the

researcher journal and elaborated upon. In addition, notes on why codes were used and

changed were also included in this audit trail. Inductive analysis was used to evaluate

field notes along with the interview transcripts (Braun & Clarke, 2006).

Individual Interviews

 At the conclusion of the study, one third of the participants were purposefully

selected for individual interviews about their experiences in the intervention.

Interviewees were selected based on my observations of participants’ behavioral

engagement that were also recorded in my field notes (see Table 4.12). Behavioral

engagement was defined as on-task involvement and participation (Fredricks et al., 2004;

Kim et al., 2015, 2017; Skinner et al., 2009). These individual interviews each took

approximately 30 minutes in length and took place in my office during the class meeting

schedule after the intervention was completed. The interview questions focused on the

second research question and were delivered through a semi-structured interview format

(see Appendix G). Each interview was open-ended in format, and I prompted the

participant with a question, listened to the participant’s response, and asked follow-up

prompts from the interview protocol as needed.

www.manaraa.com

122

Table 4.12. Interviewees’ Demographic Information

Pseudonym Age Gender Class. Education

Major

Prog.

Exp.

Robo.

Exp.

B. Engage.

Paula 21 Female Junior Elementary No No High

Mariah 18 Female Sophomore Elementary No No High

Randy 18 Male Freshman Middle No Yes Medium

Katy 18 Female Freshman Elementary No No Medium

Jennifer 19 Female Sophomore Elementary No No Low

Simon 20 Male Sophomore Middle No No Low

Note. Class. means Classification, Prog. Exp. means programming experience, Robo.

Exp. means robotics experience, and B. Engage. means behavioral engagement.

 Transcripts of the interviews were made in real-time with the Microsoft Dictate

audio transcribing tool in Microsoft Word, and the interviews were also audio recorded

using a video camera facing a wall to record the interviews’ audio but not video.

Transcriptions were checked for accuracy by me against recordings. Updates and

formatting changes were made to accurately reflect the experiences and responses of each

participant. The beginning parts where I explained the project and informed the

participant of their rights were removed from the beginnings of the transcripts, and

closing remarks were removed. In three instances with Simon, his responses were

muffled or otherwise unintelligible. Notes were made within the transcript in these

instances. For example, when his response for one question was muffled to the point

which the microphone could not pick it up to be accurately transcribed in Microsoft

Word, and the backup recording could not be used, and a note was included in brackets:

Q: Which ones were at least enjoyable?

A: [Muffled response]

Q: OK, alright, so like the pseudocoding activities?

A: Yeah.

www.manaraa.com

123

The transcriptions were each contained in their own Microsoft Word documents. After

each transcript was cleaned for formatting and clarity, the finalized transcripts were

emailed privately to each participant to ensure their accuracy through member checking.

Participants were asked to respond back, noting any perceived inaccuracies in the

transcripts. Three of the six interview participants responded back and confirmed their

transcripts. Then, coding was performed.

Analysis of qualitative data. Participants’ responses in the transcripts as well as

my field notes were examined through inductive analysis (Creswell, 2017; Mertler,

2017). Before formal coding began, I reviewed each transcript numerous times over a

period of two weeks to become familiarized with the transcripts’ contents. The transcripts

and field notes were then uploaded into the Delve coding web tool.

Two cycles of coding were performed. Each cycle consisted of multiple rounds of

coding. Open coding was performed in the first cycle, followed by pattern coding in the

second cycle (Saldaña, 2016). Table 4.13 shows the total numbers of final codes applied.

These cycles and their rounds will be described in the sections below. Then, how the

themes were identified will be described.

Table 4.13. Summary of Qualitative Data Sources

Data Sources Final Open Codes Applied

Field Notes 16

Interview Transcripts 164

Total of Sources 180

First cycle coding. For first cycle coding, two rounds of open coding were used to

separate the qualitative data into discrete parts to analyze similarities and differences

www.manaraa.com

124

(Saldaña, 2016). The transcripts and field notes were analyzed sentence-by-sentence in

this open coding cycle (see Figure 4.1 and 4.2). Each of these rounds will be explained in

the paragraphs below.

Figure 4.1. Open coding in the Delve web tool.

Figure 4.2. Open coding of field notes in Delve.

Codes which summarized the experience of the participant in the transcript or my

observations in the field notes were assigned to the qualitative data (Bloomberg & Volpe,

www.manaraa.com

125

2016). Notes about the meanings of codes and topics of interest to review in further

rounds of coding were kept in the researcher journal as a timeline of thoughts and events

that occurred during the coding process (Lincoln & Guba, 1985; Merriam, 1998). In some

instances, more than one code was applied for different aspects of a sentence through a

coding process known as splitting (Saldaña, 2016). According to Saldaña (2016), splitting

is a “meticulous line-by-line coding” technique that is used to provide more specific

codes to transcripts (p. 229). For example, Figure 4.3 illustrates how the codes of More

technology in future and Career Motivation were applied to the second sentence.

Figure 4.3. Split coding in Delve.

The first round of coding resulted in 193 preliminary codes. After peer debriefing

(Lincoln & Guba, 1985; Shenton, 2004) with the dissertation chair, seven revisions were

made to these first codes. For example, the code Math thought process was changed to

Translates math after a peer-debriefing conversation where it was decided that the code

could be updated to better describe the excerpt, which noted the translation of math from

an abstract form to a concrete one for students.

A second round of open coding was performed where the experiences of the

participants were captured. During this round of coding, some codes were discarded or

combined to encapsulate participants’ responses more accurately (Saldaña, 2016). Figure

4.4 shows an example of the coding schemes. For example, the Round 1 code of All

enjoyable was discarded and its contents were combined with the code Enjoyed all

www.manaraa.com

126

activities. The code STEM/technology jobs going to become more important was

subsumed into the More technology in future code in the second round. During this

round, codes were also renamed to align more directly to the second research question.

For example, the code Improve skills to become more employable from Round 1 was

updated to the code of Career Motivation in Round 2 to better reflect the subscales used

to evaluate the second research question. All changes to codes were recorded with

analytic memos. This second round of coding resulted in 180 unique codes. I met with

the dissertation chair, and peer-debriefing (Lincoln &Guba, 1985; Shenton, 2004) was

again performed to review the analytic memos on the changes and to ensure the integrity

of each of my codes.

Figure 4.4. Example of coding schemes.

Second cycle coding. The second cycle consisted of two rounds of pattern coding.

Pattern coding is used to condense large amounts of data into smaller units to develop

categories and then themes (Saldaña, 2016). In this cycle, pattern coding was used to

filter the first cycle codes down into pattern codes, shown in Figure 4.5.

www.manaraa.com

127

Figure 4.5. Sorting of open codes into pattern codes.

Each pattern code consisted of multiple sub-codes from the first cycle. I aligned

each open code to a pattern code category based on a definition, as shown in final form in

Table 4.14. For example, the pattern code of Programming Embodies Abstract Concepts

contained codes that illustrated participants’ perceptions about taking abstract formulas or

equations and seeing them embodied through programming. To categorize codes into

pattern codes, I first exported the finalized first cycle codes out of Delve. Then, as

depicted in Figure 4.4, I compared open codes to align the open codes with the evolving

pattern codes (Lincoln & Guba, 1985). A total of four codes from the open coding cycle

could not be categorized due to their insufficient usefulness or insignificance for

describing participants’ experiences, and they were discarded (e.g., prefer exactness)

(Saldaña, 2016). During the pattern coding process, a note was made in my journal to

keep track of decisions that were made about the codes’ meanings and relationships

(Bazeley, 2013; Mertler, 2017). Peer debriefing (Lincoln & Guba, 1985; Shenton, 2004)

was again performed with my dissertation chair, which led to more specific pattern code

titles as well as the reorganization of different sub-codes to align to more suitable pattern

www.manaraa.com

128

codes. For example, the pattern code Self-Efficacy was split into pattern codes Low Self-

Efficacy and Increased Self-Efficacy; the pattern code of Mazes was discarded, and its

sub-codes were added to the Challenges pattern code. Updates to the verbiage of the

codes’ definitions were also made. For example, the Robotics Visualize Abstract

Concepts pattern code’s use of the word “sentiments” in the definition “Codes which

illustrated participants’ sentiments about taking abstract formulas or equations and seeing

them visualized through robotics” was updated to “perceptions” in order to remove

confusion relating to the two definitions of “sentiments.” This change was recorded in the

researcher journal notes as follows:

The term sentiments in the definition for the Robotics Visualize Abstract Concepts

pattern code was updated to the term perceptions due to the recommendation that

sentiments may confuse readers with its two different definitions

(attitude/perception toward something versus feelings of tenderness).

These peer debriefing (Lincoln & Guba, 1985; Shenton, 2004) changes filtered 176 of the

unique open codes from the first cycle into the 20 pattern codes. After peer debriefing

(Lincoln & Guba, 1985; Shenton, 2004) and a second round of pattern coding, these were

finalized into 22 pattern codes. These 22 finalized pattern codes are displayed in Table

4.14. Once the pattern codes were well-defined, peer debriefing (Lincoln & Guba, 1985;

Shenton, 2004) was again performed, and the individual codes that comprised each

pattern code were again analyzed for alignment and duplicity. For example, the open

codes Fits with math, Use with math, and Geometry were moved into the pattern code

Single Subject Integration Strategies.

www.manaraa.com

129

Table 4.14. Cycle 2 – Final Pattern Codes

Pattern Codes Pattern Code Definitions Example Excerpt

Advantages in

Job Seeking

Codes that denoted job, resume, and career

skill value (preservice teacher-centered)

“…so, it'll be a plus for you to have that special for employers

that you have that, so I think it's a plus.”

– Randy

Autonomy

Codes highlighting participants’ preferences

to solve problems in their own ways

“Students asked if they have to solve a particular way (rotations,

degrees, seconds) or if they were allowed to change – preferred

degrees.”

– Field Notes

Better

Educator

Codes about how participants perceived

learning programming could better them to

grow as educators for their students

“I think anything you can learn - any tool or whatever - you can

learn as a person, it’s always good to grow.”

– Randy

Blank Slate Codes acknowledging participants’ initially

non-existent understanding of programming

“So, I had like a blank slate and now I kind of understand...”

– Katy

Challenges

Codes highlighting participants’ enthusiasm

for the challenges

“I guess the challenges were fun…”

– Randy

Collaboration

Strategies

Codes highlighting participants’

collaborative strategies (partner, other

group, etc.)

“I just worked with my partner and like used her insight use my

insight together…”

– Paula

Cross-

Curricular

Integration

Strategies

Codes representing participants’ cross-

curricular subject integration ideas for their

future classrooms

“You could do like longitude and latitude. But you could do

that…voyages of different explorers. You could talk about the

mileage, and you could actually kind of have like on a scale, and

I didn't think about it that way, but it was pretty interesting.”

– Randy

www.manaraa.com

130

Table 4.14. Cycle 2 – Final Pattern Codes Continued.

Pattern Codes Pattern Code Definitions Example Excerpt

Decisively

Committed to

Integrate

Codes associated with participants’ decisive

commitment to integrating programming

“I don't know exactly how it would fit in, but I know I could

definitely like find a way once I get their curriculum. Like I

would love to find a way.”

– Katy

Difficulty Codes noting difficulty or confusion with

the programming activities and challenges

“When we got into the more difficult stuff like the loops.”

– Katy

Extra Effort Codes which demonstrated participants’

extra effort while learning programming

“Well I know that my partner for this Googled like formulas…”

– Jennifer

Foundational

Knowledge

Codes noting the basic or foundational

content was important (i.e. Basic

Procedures, lectures, etc.)

“It was most valuable starting with the basics everything just

leading up to the final thing just everything adding together was

the most effective thing for me personally.”

– Mariah

Help-Seeking Codes which demonstrated participants’

strategies for getting help when

experiencing a problem (i.e. another group)

“If I wasn't sure about something, I would go ask somebody who

got it already, got finished [with] the course.”

– Simon

Hesitant to

Integrate

Codes associated with participants’ hesitant

feelings about integrating programming or

feelings that they needed to learn more

before integrating programming into

teaching

“So, yeah, honestly in history I'm not sure like I said if I was

teaching math it would make perfect sense. In history I don't

know to be honest.”

– Jennifer

www.manaraa.com

131

Table 4.14. Cycle 2 – Final Pattern Codes Continued.

Pattern Codes Pattern Code Definitions Example Excerpt

Increased

Self-Efficacy

Codes that related to increased self-efficacy

(i.e., feelings of confidence toward learning

more programming or self-efficacy when

not understanding the programming activity

or challenge)

“Yeah, a little bit more confidence. I think it [confidence] has

definitely grown since we started with the programming.”

– Randy

Interest

Codes for excerpts demonstrating interest “Probably when we learned to get them to talk. I think it was

cool how… I think it added more of a sense of like depth to it,

maybe? Not just in moving around like they were like moving

and talking and it was like really interesting to see like a box do

that really.”

– Katy

Low Self-

Efficacy

Codes that related to low self-efficacy (i.e.,

feelings of confidence toward learning

programming)

“Oh, it [self-efficacy] was definitely at a zero before.”

– Paula

Options in Job

Seeking

Codes that denoted increased options while

job seeking

“I think that it's like a unique skill set to have when you're like

applying as a teacher anywhere… like, maybe be able to be

thrown into that classroom to get your first job or whatever.”

– Jennifer

Prepares

Students for

Future

Careers

Codes which noted learning programming

would help preservice teachers’ future

students learn and be better prepared for

their futures/jobs (student-centered)

“I think honestly like the stem program and like that's gonna be

the more like… the jobs that everyone's gonna look forward to

as like technology advances. So, I feel like children need to learn

how to do it.”

– Mariah

www.manaraa.com

132

Table 4.14. Cycle 2 – Final Pattern Codes Continued.

Pattern Codes Pattern Code Definitions Example Excerpt

Programming

Embodies

Abstract

Concepts

Codes which illustrated participants’

perceptions about taking abstract formulas

or equations and seeing them embodied

through programming

“I think it’s interesting how it translates from like a math

equation…”

– Jennifer

Robotics to

Visualize

Abstract

Concepts

Codes which illustrated participants’

perceptions about taking abstract formulas

or equations and seeing them visualized

through robotics

“…it’s like a physical way, it shows them like visual, like they'll

be able to see like you do this you add this and the robot does

something.”

– Paula

Single Subject

Integration

Strategies

Codes representing participants’ single

subject integration ideas for their future

classrooms

“Maybe like how kids think through math… so like if you have

like 1 movement block and two movement blocks is gonna move

like 2 blocks.”

– Katy

Updates to

Instruction

Codes that related to updates students

suggested for the programming instruction

“I would make it longer… make it longer, maybe 6 weeks and

that way you can go slow because like I know every not

everybody in the class knew everything on how to do it in this

pace and like I didn't know every single answer right off the bat

but like I think like if we went like slower and it would just be

more beneficial.”

– Simon

www.manaraa.com

133

Identifying themes. With the pattern codes finalized, I sorted the pattern codes to

illuminate categories and themes. I sorted these pattern codes in a fluid and dynamic

process which allowed for flexibility (Corbin & Strauss, 2008). In a code mapping

process described by Saldaña (2016), “categories of categories” in “superordinate and

subordinate arrangement” (p. 278) were created by moving around the pieces of paper for

each pattern code. Pattern codes were united into categories. The categories were

analyzed, and themes were revealed, as shown in Figure 4.6.

Figure 4.6. A concept map of the coding process.

www.manaraa.com

134

The pattern codes of Difficult and Updates to Instruction were not relevant to

motivation and were aligned to interview questions about participants’ perceptions of the

curriculum that were designed to guide future curriculum improvement. They have

therefore been addressed in the Curriculum Design Implications section of this

dissertation and were not used to support any categories or themes.

By reviewing participants’ interview responses, a theme was uncovered which

explained participants’ intrinsic motivation. Participants explained that their interest and

enjoyment increased, that the authentic problems in the intervention that they solved with

educational robotics were fun, and that the ability of educational robotics to represent

abstract concepts was interesting. The incorporation of four pattern codes (Robotics to

Visualize Abstract Concepts, Programming Embodies Abstract Concepts, Interest, and

Challenges) led to categories associated abstract concepts in concrete form being

interesting, and problem-solving using programming being motivating. From those

categories, the theme that participants perceived that a problem-based robotics

curriculum improved their intrinsic motivation toward programming was uncovered.

In addition, participants’ interview responses showed that participants perceived

that learning programming through educational robotics would provide them with an

attractive skillset in interviews, more options in the job market outside of their planned

certification area, and the ability to better teach and prepare their future students.

Incorporating four pattern codes (Advantages in Job Seeking, Options in Job Seeking,

Better Educator, and Prepares Students for Future Careers) led to categories associated

with participants’ perceptions that they had increased their advantages and options in the

job market and they had expanded their future teaching potential. In turn, the theme

www.manaraa.com

135

showing that participants agreed that knowing programming as a skill had advantages as

a teacher was revealed.

Qualitative data showed that participants used collaborative problem-solving

strategies, preferred autonomy in solving problems, and put forth extra effort while

programming. Incorporating four pattern codes (Autonomy, Extra Effort, Help-Seeking,

and Collaboration Strategies) led to categories associated with autonomy in trying

different programming options to solve problems and actively implementing

collaborative problem-solving strategies. The theme highlighting that participants

experienced self-determination towards programming in the face of robotics challenges

was revealed.

Participants’ interview responses noted that at the beginning of the intervention,

participants did not have confidence in their programming skills, but by the end, those

views had changed. Participants noted that the foundational knowledge and skills that

they learned could be relied upon as the difficulty of the units increased, which built their

self-efficacy. Incorporating four pattern codes (Low Self-Efficacy, Blank Slate, Increased

Self-Efficacy, and Foundational Knowledge) led to categories associated with how

participants had overcome initial low levels of self-efficacy, and the gradually increased

level of difficulty of the units developed participants’ confidence. In turn, the theme

reflecting that participants perceived that the gradually increasing level of difficulty in the

robotics curriculum improved their self-efficacy about programming from initially low

levels was uncovered.

Reviewing participants’ interview responses uncovered decisively positive as well

as more reserved commitments to integrate programming into their future classrooms.

www.manaraa.com

136

Participants’ interview responses also revealed that they had already brainstormed

specific integration ideas for their subject area and grade level. Incorporating four pattern

codes (Decisively Committed to Integrate, Hesitant to Integrate, Single Subject

Integration, and Cross-Curricular Integration Strategies) led to the categories about

participants’ improving intention to integrate programming, and the ways in which they

had devised instructional strategies for using programming in their future classrooms.

Based on these categories, the theme illustrating that participants perceived programming

as a viable fit in their future classrooms was generated from these categories.

Validating and finalizing the themes. As themes were identified, thick, rich

description, an audit trail, peer-debriefing, and member checking were used to evaluate

the themes’ validity. Thick, rich descriptions (Bazeley, 2013; Creswell, 2017; Mertler,

2017) in the form of verbatim quotes from the participants were used to support the

themes. A researcher journal was used to maintain an audit trail documenting the events

and decisions which occurred during the study and subsequent analysis (Lincoln & Guba,

1985; Merriam, 1998). The researcher journal was used to justify codes as well as

compare and supplement the thick, rich descriptions. Peer debriefing (Lincoln & Guba,

1985; Shenton, 2004) was performed with my dissertation chair, which aligned codes and

focused the language of the themes. Member checking (Creswell, 2017; Merriam, 1998;

Mertler, 2017) occurred via email because of the COVID-19 pandemic and was used to

allow participants to verify the accuracy of their interview transcripts as well as the

findings. Interviewees were first emailed the interview transcripts and were instructed to

reply with critiques or questions. Three of the six interviewees emailed back to confirm

the accuracy of their transcripts, but no additional insights were provided. The three other

www.manaraa.com

137

interviewees did not respond. Then, interviewees were asked to review the themes and

categories and email me back with critiques or questions. Three of the six interviewees

emailed back to confirm the accuracy of the themes and categories, but no additional

insights were provided. The other three interviewees did not respond. The themes and

categories were then finalized.

Themes

Themes were derived from the finalized categories. Categories arranged by

common responses shared by multiple participants were composed into themes related to

the second research question (Saldaña, 2016). In the following section, themes are

presented accompanied by meaningful verbatim quotations from the individual

interviews, attributed to participants via pseudonyms, and excerpts from the field notes

are indicated in the text as field note entries that have been chosen to support the themes

by presenting context (Creswell, 2017). Interview quotations are accompanied by a

pseudonym to protect the participants’ identities (i.e., Paula, Simon, Randy, etc.). Five

overarching themes were revealed from the qualitative analysis. Through the evaluation

of the field notes and individual interviews, it was revealed how and to what extent the

educational robotics intervention influenced preservice teachers' motivation related to

programming. Interview data indicated the following themes: (1) participants perceived

that a problem-based robotics curriculum improved their intrinsic motivation toward

programming, (2) participants agreed that knowing programming as a skill had

advantages as a teacher, (3) participants experienced self-determination towards

programming in the face of robotics challenges, (4) participants perceived that the

gradually increasing level of difficulty in the robotics curriculum improved their self-

www.manaraa.com

138

efficacy about programming from initially low levels, and (5) participants perceived

programming as a viable fit in their future classrooms. These themes, their associated

categories, and example open codes which contributed toward them are outlined in Table

4.15.

Table 4.15. Summary of Themes, Categories, and Example Open Codes

Theme Categories Example Open Codes

Participants

perceived that a

problem-based

robotics

curriculum

improved their

intrinsic

motivation

toward

programming

Representing abstract

concepts in concrete form

fostered interests

Problem solving using

programming improved

motivation

Translates from math

Physical way to teach abstract

Visualize equations

Cool

Interesting

Authentic problem-solving

Participants

agreed that

knowing

programming as a

skill had

advantages as a

teacher

Job seeking advantages

for preservice teachers

Expanded preservice

teachers’ teaching

skillsets

Career motivation

Unique skillset

High demand

Grow as a teacher

Technology will be more relevant

in the future

Would come in handy as a teacher

Participants

experienced self-

determination

towards

programming in

the face of

robotics

challenges

Autonomy in trying

different programming

options to solve problems

Actively implementing

collaborative problem-

solving strategies

Self-Determination

Reviewed class resources

Googled formulas

Asked a partner

Asked other groups

Ask somebody who already

completed it for help

www.manaraa.com

139

Table 4.15. Summary of Themes, Categories, and Example Open Codes Continued.

Theme Categories Example Open Codes

Participants

perceived that the

gradually

increasing level

of difficulty in the

robotics

curriculum

improved their

self-efficacy

about

programming

from initially low

levels

Overcoming initially low

self-efficacy

Developing confidence

about programming

gradually

Beginning: Did not know what to

expect

Beginning: Blank slate

Beginning: Didn’t know much

programming

Basics and foundational

knowledge effective

Lectures were effective

End: Programming knowledge has

grown

Participants

perceived

programming as a

viable fit in their

future classrooms

Improving intentions to

integrate programming

Actively devising

strategies to integrate

programming

Sees potential for use in classroom

Definitely add programming to

future teaching

Math

Science

Use as reward

Theme 1: Participants perceived that a problem-based robotics curriculum

improved their intrinsic motivation toward programming

This theme describes how participants perceived that the problem-based

educational robotics activities in the curriculum improved their intrinsic motivation

toward programming. Kim et al. (2015, 2018) and Kucuk and Sisman (2018) emphasized

that preservice teachers’ intrinsic motivation should be kept at high levels throughout

robotics activities. Participants experienced increased intrinsic motivation toward

programming. Intrinsically motivated learners work toward attaining a goal because of

their internal enjoyment in completing the task (Amabile et al., 1994; Law et al., 2010).

Interviewees described their intrinsic motivation through characterizations of the

www.manaraa.com

140

educational robotics by often referring to them as being “fun,” “cool,” or “interesting,”

and therefore intrinsically motivating. “I've taken technology classes before and if we did

something like this it would have been like 10 times cooler,” Simon stated in his

interview. Educational robotics were not mentioned by me in any of the individual

interview questions or follow-up prompts; however, the educational robotics activities

and challenges were the elements of the curriculum that seemed to motivate participants

the most. For example, Mariah explained in her interview, “Honestly, I think the whole

experience is really fun and just being able to move the… program things so you could

move a robot. I think that’s a really cool thing to do.” Overall, the participants found

programming educational robotics to be intrinsically motivating.

Theme 1 conveyed how participants perceived that a problem-based robotics

curriculum improved their intrinsic motivation toward programming. The following

sections will outline the categories subsumed in support of this theme: (1) representing

abstract concepts in concrete form fostered interests, and (2) problem solving using

programming improved motivation.

Representing abstract concepts in concrete form fostered interests. Half of

the interviewees (n = 3) commented that an element they found interesting was the ability

of the programming and educational robotics to take abstract concepts and make them

concrete for learning. This category is related to Theme 1 because interest aligns with

intrinsic motivation (Ryan & Deci, 2000). Constructivism includes the building of

abstract knowledge structures in a learner’s mind through concrete experiences (Piaget,

1967, 1973). Educational robotics have been used to demonstrate physical representations

of abstract concepts for learners (Bers, 2010; Bers et al., 2002; Han, 2013). The idea of

www.manaraa.com

141

using educational robotics to represent abstract concepts was noticed by participants. For

example, Paula mentioned that she perceived robotics a tool for concrete representation

in her interview: “…it’s like a physical way, it shows them like visual, like they'll be able

to see like you do this you add this and the robot does something.” An excerpt from

Jennifer’s interview summarized participants’ positive perspectives on the transition of

abstract concepts into concrete actions:

I liked when there was a maze and we had to make an equation to figure it out

because I think it’s interesting how it translates from like a math equation to like

actually like seeing it happen in front of your eyes.

The transition of math to something observable being interesting was not unique. Further

validating this category and overall theme, Katy noted in her interview that she liked the

computational thinking aspect of programming the robots and watching them perform

those programs, as well:

Maybe like how your thought processes are like related to like what the robots are

doing. I never knew about robots really but learning how to program and how it

kind of like went along with like people[’s] like thought processes I thought that

was really interesting.

Participants’ recognition of the process of taking abstract ideas and making them more

concrete took another form as well. Similarly, Randy enjoyed the pseudocode process. In

his interview, he explained that he appreciated the process of writing the pseudocode and

then translating it into the programming language, making it more concrete:

www.manaraa.com

142

I forget the word, what it was called…pseudocode. And actually doing that is

exactly the same things [sic] like putting the code into the computer so I thought

[it] was good visual representation of that, so I appreciate that.

The idea of translating abstract concepts into concrete processes was also reflected in my

field notes. For example, I noted that “Many students [are] using math as opposed to

guess and check,” choosing the workflow of writing abstract math formulas and then

transitioning their programs from math formulas to programs as opposed to tinkering

and writing the programs based on the concrete actions of their robots. Additionally, I

made a field note about how there was confusion over presenting a complicated

variables algorithm without focusing on the math and pseudocode behind it. Altogether,

these data indicated that while participants solved problems, they were interested in

seeing abstract thinking translated into concrete representations either in the

programming language or in the movements of the educational robotics. Participants’

interest links to intrinsic motivation and supports Theme 1.

Problem solving using programming improved motivation. The problems

participants solved improved their intrinsic motivation. This category aligns with Theme

1 because it describes a source of participants’ intrinsic motivation. Authentic problems

in this context are those which combine content from science and math areas to be solved

with the aid of educational robotics (Kopcha et al., 2017). Learners are most likely to

learn programming skills when educational robotics tasks are introduced in a context that

necessitates problem-solving through authentic science and math skills (Pea, 1987). All

interviewees (n = 6) articulated that the authentic activity and challenge elements of the

curriculum were intrinsically motivating in their responses to question #2, “Tell me about

www.manaraa.com

143

your experiences with the programming activities in the course.” In addition,

programming the robots to resolve authentic problems or challenges (e.g., color testing,

mazes) were the aspects of the intervention which participants most often characterized

as interesting or fun.

For example, partners found it enjoyable to program the robot to say the name of

the color the sensor detected using a switch and a loop to control the flow of the program

depending on the color input. In reference to this activity, Katy stated the following in her

interview:

Probably when we learned to get them to talk. I think it was cool how… I think it

added more of a sense of like depth to it, maybe? Not just in moving around like

they were like moving and talking and it was like really interesting to see like a

box do that really.

Overall, half of the interviewees (n = 3) mentioned that they were interested in not only

seeing the robots move, but some authentic tasks such as programming them to identify

different colors and speak were intrinsically motivating aspects as well. My field notes

confirmed the interview data and noted that participants were energized and interested in

checking the colors of different folders they had in their backpacks, as well as different

objects throughout the room. However, it was noted that some participants quickly tired

of hearing the colors repeatedly announced by the robots. Interestingly, some groups –

outside of my classroom instruction – figured out how to record their own sounds and

write programs that played their recordings for different colors, exceeding the

requirement of the activities. This demonstrated students’ interest in the activity.

www.manaraa.com

144

The authentic problems participants solved in the challenges were the intrinsically

motivational aspect cited by all interviewees (n = 6). Interviewees pointed to the

authentic problems as being fun and interesting. “I guess the challenges were fun and

figuring out ways to use the program,” Randy stated. Two challenges that were most

often mentioned by interviewees as being intrinsically motivating were the Maze

Challenge in the Advanced Procedures unit and the Maze with Variables Challenge in the

Variables unit.

Participants were motivated by the mazes. “I think the most enjoyable part was

we had to do the maze,” Randy noted in his interview about the Maze Challenge. Paula

reinforced Randy’s enjoyment of the Maze Challenge. Paula mentioned in her interview

that she enjoyed working through the Maze Challenge early in the intervention because it

gave her an opportunity to exercise her new, yet limited programming skills. The

experiences shared by Randy and Paula further validate the importance of this category

related to solving problems and Theme 1.

The Maze with Variables Challenge was also described as being motivating. This

challenge took the original Maze Challenge and added color swatches to the floor of the

maze. Participants had to program their robots to turn in a specific direction or stop

depending on which color their robot’s color sensor picked up. Simon explained in his

interview what he liked from the intervention:

Thinking back…like each time you use the robots to navigate a different course

and like just like learning about like how to do every single course having to stop

[at a] certain color and have it [to] make like sharp turns and just like being able

to like fully understand how to use it in particular.

www.manaraa.com

145

Mariah echoed Simon’s statement in her interview: “The last one…Just seeing a robot

move whenever it hits the color or like having it stop. I think it’s a really interesting way

[to learn].” In summary, these data indicated that problem solving using programming

improved participants’ intrinsic motivation.

Theme 2: Participants agreed that knowing programming as a skill had advantages

as a teacher

This theme describes participants’ agreement that knowing programming as a

skill had advantages for them professionally as teachers. Learners who have career

motivation related to a topic see that topic’s relevance to their future careers (Arwood,

2004; Glynn et al., 2009). Preservice teachers who have learned programming with the

aid of educational robotics have experienced meaningful increases in their STEM career

motivation (Kim et al., 2015). Interviewees described their career motivation through

references to the personal career and teaching advantages of learning programming. For

example, Randy explained in his interview that learning programming as a teacher was

advantageous: “Especially with how society is going with more technology, so it'll be a

plus for you to have that special for employers that you have that [sic], so I think it's a

plus.” The following sections will outline the categories subsumed in support of this

theme: (1) knowing programming had job seeking advantages for preservice teachers,

and (2) knowing programming expanded preservice teachers’ teaching skillsets.

Job seeking advantages for preservice teachers. Interviewees expressed their

perceptions of the value of learning programming in terms of obtaining more advantages

on the job market. This category aligns to Theme 2 because it explains a personal

professional reason behind why the participants valued knowing programming. Career

www.manaraa.com

146

motivation is important to learners’ long-term goals, with professional success being a

primary reason why learners pursue college studies (Glynn et al., 2011). Educational

robotics have been used in prior research to increase learners’ career motivation (Goh &

Ali, 2014). Advantages or options in job seeking are pertinent to participants’ career

motivation. The two main reasons interviewees reported that they were motivated to learn

and use programming for their own benefit stemmed from (1) being more marketable in

interviews, and (2) creating more opportunities for themselves for positions outside their

licensure area. Overall, half the interviewees (n = 3) viewed learning programming as a

skill that would be valuable in obtaining their future employment. Interviewees noted that

the future of the economy being tied to the growth of technology was a factor that

impacted their career motivation. In his interview, for example, Simon explained that

knowing programming could make him more desirable in a job interview: “You walk

into a job interview, and you tell them I don't even need training like I know how to do

this I think it goes a long way.” While some interviewees noted that programming was a

skill that employers would be impressed by, others noted that learning programming

might give them more options on the job market for positions different from their

licensure area. For example, Jennifer explained in her interview:

I think that it's like a unique skill set to have when you're like applying as a

teacher anywhere because like I know at my high school that the tech ed. teachers

were like in high demand, but then nobody wanted to teach it, so I think that it's

like, you need to have that in like, maybe be able to be thrown into that classroom

to get your first job or whatever.

www.manaraa.com

147

Participants perceived the programming experiences gave them a more diverse skillset to

get their first teaching jobs. From adding confidence in interviews to creating a greater

number of opportunities to get a foot in the door in schools for positions outside of their

licensure area, participants confirmed their career motivation through their recognition of

the employability of programming-literate educators.

Expanded preservice teachers’ teaching skillsets. Most interviewees (n = 4)

expressed that learning programming through educational robotics would help them

expand their future teaching skillsets to benefit their future students. This category aligns

to Theme 2 because it explains an altruistic professional reason for why the participants

valued knowing programming. Increased knowledge of teaching, such as teaching

strategies, is a factor which can motivate teachers to stay in their career (Sinclair, 2008).

Programming offered new teaching strategies, among other things, to participants.

Interviewees became motivated to learn programming through educational robotics

because it would allow them to provide better lessons for their students. Statements from

interviewees identified the added teaching options which programming offered. For

example, “I feel like it would come in handy a lot with me going into teaching,” noted

Katy. Learning with educational robotics also promoted personal growth as a teacher. In

his interview, Randy stated, “I think anything you can learn – any tool or whatever – you

can learn as a person, it’s always good to grow.” Jennifer echoed this perspective in her

interview and reinforced how learning programming would further benefit the

participants’ future students:

I think like because technology is – even since I was like in kindergarten keep

coming into the classroom – more and more and more and it's going to be like a

www.manaraa.com

148

bigger thing and understanding it will help you like to better the education of your

students.

In particular, the use of programming and educational robotics to create interesting and

engaging lessons was a common idea. “I think it could be fun for them,” remarked

Jennifer in her interview. Paula thought back to the integration example videos, which

showed teachers using programming in various subjects. “Seeing all the different videos

that we watched seeing teachers incorporate it even in like gym class, I thought it was a

really good way to get students like interested in learning whatever topic it was,” she

explained in her interview. Mariah added she was motivated to integrate programming

because it could help with getting students’ attention within a lesson, “Just make lessons

really interesting and just to keep them engaged.” Participants noted perspectives that

programming activities offered a teaching tool to enhance their lesson plans to grab

students’ attention and engage them, making their teaching better.

Recognition of the importance of participants preparing their students for the

future technology-driven economy was common. In her interview, Katy stated that the

aspects of “Math and learning technology” were important for students to learn. Katy

explained:

We are getting more in[to] the future [and] technology is getting more ingrained

in our lives. Technology and like, learning how to program stuff because, like I

said, like the more and more into the future stuff like [progresses], that's going to

be more relevant.

Mariah echoed this perspective of the importance of preparing future students for a

technology-driven job market in her interview: “I think honestly like the STEM program

www.manaraa.com

149

and like…the jobs that everyone’s going to look forward to as like technology advances.

So, I feel like children need to learn how to do it.” Mariah’s perspective further validates

the importance of this category and theme.

Using programming to help provide differentiated methods of instruction was

another commonality in the interview responses. Jennifer stated in her interview that she

would use programming “If there’s like value in it” such as using programming and

educational robotics as a reward activity for students or having students learn through

play. “I think it would be like beneficial just like the parallelogram blocks and stuff, like

kids play with that they don't even realize that they're learning,” Jennifer added. Paula

also explained in her interview the benefits of programming educational robotics as an

added teaching strategy to help students learn without knowing it:

I feel like because students like don't always like… I think it's a way to like get

them to learn without realizing that they're learning something 'cause they're just

like oh cool it’s robots like they're not really thinking about the fact that they are

learning something through using them.

The idea shared by Paula further validates this category and overall theme. As outlined

above, one reason participants valued learning programming through educational robotics

was because it could help them become better teachers to improve their future teaching

and benefit their future students.

Theme 3: Participants experienced self-determination towards programming in the

face of robotics challenges

 This theme describes interview responses that indicated participants’ experiences

with self-determination. Learners with self-determination feel as though they have

www.manaraa.com

150

control over their learning (Black & Deci, 2000). Teachers must have self-determination

to be successful when integrating technology (Cullen & Greene, 2011). Field note entries

highlighted participants’ preference for autonomy in their problem-solving solutions and

participants cited using personalized problem-solving techniques and collaborative

problem-solving strategies in order to solve problems. In his interview, Randy described

how he would seek out peers and “compare notes with other people” as a way to identify

what he was doing wrong in order to adjust his programming strategy. The following

sections will outline the categories subsumed in support of this theme: (1) autonomy in

trying different programming options to solve problems, and (2) actively implementing

collaborative problem-solving strategies.

Autonomy in trying different programming options to solve problems. The

educational robotics activities and challenges fostered the autonomy of participants to try

their own unique options to solve problems. This category is related to Theme 3 because

autonomy is a factor in self-determination (Black & Deci, 2000; Ryan & Deci, 1985,

2020). The educational robotics activities and challenges were designed to be able to be

solved in multiple different ways, which allowed participants to experiment with different

programming processes. Participants indicated that the open-ended nature of the activities

and challenges fostered autonomy among participants. Randy explained in his interview

the appeal of autonomy in the educational robotics programming activities: “I guess you

could use the same but different program but like I guess use different ways to get to the

same result.” Paula explained in her interview that she was intrigued by the opportunity

to exercise her new, yet limited programming skills to try out various solutions and find

the one that solved the problem. “We didn't really know that much about programming

www.manaraa.com

151

yet and we had to kind of like figure out our own way to like get through the maze,”

Paula said. My field notes offered insights into autonomy. One field note stated that

participants asked if they had to solve an activity in a particular way (using rotations,

degrees, or seconds) or if they were allowed to choose their own programming method to

solve the problem. The participants were excited when they were told that they could

solve the challenge using their own preferred method. These data indicated that the

educational robotics programming activities encouraged interviewees’ autonomy in

problem-solving

Actively implementing collaborative problem-solving strategies. All

interviewees (n = 6) commented that actively implementing collaborative problem-

solving (CPS) strategies contributed toward learning the programming concepts. This

category is related to Theme 3 because CPS strategies can help learners’ self-

determination by combining their collective efforts and knowledge (Kopcha et al., 2017;

Lanzonder, 2005; Witney & Smallbone, 2011). Both the aid of partners designed as part

of the curriculum as well as the unplanned collaborative classroom environment were

mentioned by participants in the interviews. This category is related to Theme 3 because

participants’ utilization of CPS strategies represented participants’ additional effort

toward solving a learning task, thus their self-determination. The grouping of participants

into partners provided a strong aid for participants to collaborate and build upon their

collective insights to solve problems. “I just worked with my partner and like used her

insight and used my insight together,” Paula explained in her interview. Randy also stated

in his interview that his partner aided him in learning programming: “I guess I will lean

www.manaraa.com

152

on the people that [I] worked with and ask them questions.” Partners who combined their

insights to solve problems represented CPS strategies and self-determination.

Interviewees noted they also sought help from peers outside of their immediate

partner when they did not understand something. Mariah explained in her interview that

becoming stuck on a problem was the trigger for when she would ask a peer: “When I

was really stuck on something that's when I was like OK, maybe I need [a person] to help

me but I need someone else… it's not clicking right now.” In his interview, Randy

commented that “I kind of would compare notes with other people and see their thinking

process and how they got their results and compare and see what I was doing and see if I

can make any adjustments.” In his interview, Simon explained his process for reaching

outside his immediate partner for help.

We all had somebody or some people either next to us doing it with us and like if

you didn't know how to do something like maybe your partner did… but like

there was always somebody in the class.

Participants described picking out peers in other pairs who had completed the activities

and challenges successfully to help them. “If I wasn't sure about something, I would go

ask somebody who got it, already got finished the course [sic],” Simon added in his

interview. The language found in four field notes affirmed participants’ interview

descriptions. Three notes in particular focused on partner collaboration dynamics. My

first note on partner dynamics chronologically was from the first Basic Procedures class.

This entry mentioned, “Partners began working together, but [they are] still not working

together as much as I would like.” This note, which highlighted that partners were less

collaborative during the Basic Procedures unit, is contrasted from one in the second

www.manaraa.com

153

Advanced Procedures class: “Partners seem to be working together better across the

board.” Finally, a separate observation noted, “Partners are planning their programs

collaboratively.” This change in partner dynamics might be attributed to the more

difficult problems given to the participants as the curriculum progressed, which required

them to collaborate more. During the Control Structures unit, another note mentioned,

“Some groups finished quickly while others struggled to keep their robot in a straight

line. Groups [are] helping each other.” In total, these data indicated that participants used

CPS strategies both between partners and between groups. These findings might indicate

that as the difficulty of the problems increased, participants sought collaboration outside

of their immediate partner to solve the problems. These interview excerpts highlighting

CPS strategies firmly supported Theme 4 and educational robotics challenges

contributing toward self-determination related to programming.

Theme 4: Participants perceived that the gradually increasing level of difficulty in

the robotics curriculum improved their self-efficacy about programming from

initially low levels

 This theme describes how educational robotics affected the participants’ self-

efficacy toward programming. Learners with self-efficacy have confidence in their ability

to achieve a learning task (Bandura, 1997). Low self-efficacy can be attributed to

educators using new teaching materials and their uncertainty with learning new

technologies (Curzon et al., 2009; Meerbaum-Salant et al., 2013). Participants were able

to overcome an uncertainty barrier to improve their programming self-efficacy.

Participants described low initial levels of self-efficacy due to their perceived low

comprehension of programming concepts. “So, I had like a blank slate,” Katy said about

www.manaraa.com

154

her beginning programming knowledge and skills in her interview. However, participants

described how their self-efficacy related to programming increased as they developed an

evolving confidence that they attributed to the gradually increasing level of difficulty of

the robotics curriculum. For example, in her interview, Mariah attributed the gradually

increasing level of difficulty of the robotics curriculum as being helpful: “starting with

the basics, everything just leading up to the final thing, just everything adding together

was the most effective thing for me personally.” The following sections will outline the

categories subsumed in support of this theme: (1) overcoming low self-efficacy, and (2)

developing confidence about programming gradually.

Overcoming initially low self-efficacy. All interviewees (n = 6) described low

initial levels of self-efficacy related to programming. This category is related to Theme 4

because it explains the commonality of where participants’ self-efficacy related to

programming began. Grover and Pea (2013) have found that self-efficacy related to

computer science was low in educators teaching computer science concepts. Low self-

efficacy may negatively impact teachers’ usage of a new technology in the classroom

(Ertmer & Ottenbreit-Leftwich, 2010; Ertmer et al., 2012), which means that participants

would not have been comfortable or competent enough to integrate programming before

the intervention. The interviewees (n = 5) commonly mentioned their initial level of

programming comprehension was nonexistent: “Oh, it was definitely at a zero before,”

explained Paula. “I didn't have much background knowledge,” stated Mariah. “Like, I

didn't know anything I didn't even know how to turn them on, so it's definitely

improved,” insisted Jennifer. Simon explained the following experience in his interview:

www.manaraa.com

155

Well at the beginning like, I didn't really know what to expect. I don't really know

but I remember we took the pretest and like I see all these codes and stuff and like

I even sent the picture to my mom and I was like, ‘do you have any idea how to

do this?’ And she's like, ‘what are you talking about?’ And I was like I wasn't

really sure what to expect.

Participants noted that the composition of the programming curriculum contributed

toward their improved self-efficacy. All interviewees (n = 6) stated that they felt that the

educational robotics programming activities helped them a considerable amount in

learning programming, removing their uncertainty in various ways. For example, Simon

stated the following in his interview:

Obviously, you know like each week something like the first week we learned

how to turn it around and stop at colors, so like learning how to do all of that, like

I didn't know how to do any of that.

Others agreed with this perspective in their interviews. “Oh, it’s definitely a lot better,”

Jennifer stated about her self-efficacy. Katy noted, “now I kind of understand that

program a little bit more…definitely, it’s grown.” “Yeah, a little bit more confidence. I

think it [confidence] has definitely grown since we started with the programming,”

remarked Randy. These data indicated that participants initially had low levels of self-

efficacy related to programming, which they overcame throughout the intervention.

Developing confidence about programming gradually. Participants’

confidence about programming developed gradually. This development was aided by the

gradual building of the difficulty of concepts in the curriculum. Learners’ self-efficacy

can be increased by experiencing success completing similar learning tasks (Bandura,

www.manaraa.com

156

1997). This category is related to Theme 4 because it shares participants’ experiences and

explains how their self-efficacy related to programming increased. A greater commitment

to teaching is reported by teachers with higher levels of self-efficacy (Chen & Yeung,

2015; Gunning & Mensah, 2011). Almost all interviewees (n = 5) noted that the

introductory knowledge and concepts – things they characterized with the terms

“foundational,” “basics,” or “simple” – were the most helpful to them. Successes with

these basic concepts developed participants’ confidence gradually, and the basics that

they learned helped them have success with more difficult problems. When asked what

the most meaningful part of the curriculum was in his interview, Simon expressed a

preference for the basic programming skills on which the other skills were built:

For the most meaningful [part], I really liked the start on how to do it. It started

like you could like figure it out. You can use the program on the computer to like

navigate through it if you learn how to do it, and then you could just like try

different things see what works [and] what doesn't, and so I think [the]

foundational stuff.

This idea was common among the interviewees. Interviewees’ responses explained that

the basic knowledge they learned could be applied and help them be successful on the

more difficult units. For example, Paula stated, “I think 'cause I'm kind of a visual person,

I think just having like the slides that you provided ahead of time and then seeing that and

being able to like apply it myself is probably the most valuable,” in reference to the

instructional presentations of basic concepts that she could apply later.

Further, the programming concepts gradually increased in difficulty level from

the foundational knowledge and skills to more complex knowledge and skills, which

www.manaraa.com

157

participants explained helped with building their competence and self-efficacy. For

example, Katy articulated the following experience in her interview:

Probably the first couple [lessons] when we were learning how many centimeters

is like in one rotation or like how many seconds it takes across this much distance.

You're really helping conceptually building the foundations of like the other stuff

that we learned.

Jennifer supported this perspective in her interview, as well. “Well, I feel like they all

were valuable because they all like built onto each other, and then I feel like each time

you did it like you could apply stuff from the last time.” Mariah also identified the

gradual progression from the basics to more advanced concepts as being helpful in her

interview: “It was most valuable starting with the basics, everything just leading up to the

final thing, just everything adding together was the most effective thing for me

personally.” These data show that the gradually increased difficulty of programming

concepts helped build participants’ programming competence and self-efficacy gradually.

Overall, participants recognized the gradual increase in the level of the units’ difficulty

and how it impacted their competence, which supported improvements in their self-

efficacy.

Theme 5: Participants perceived programming as a viable fit in their future

classrooms

This theme describes interview responses that indicated the educational robotics

programming activities affected the participants’ perceptions of programming and how it

could be applied into their pedagogy. Preservice teachers who have experienced

educational robotics interventions have been noted to develop increased motivation to

www.manaraa.com

158

integrate programming robots into their STEM teaching (Kim et al., 2015). Participants’

perceptions about integrating programming appeared in two different areas in the

interviews. The following sections will outline the categories subsumed in support of this

theme: (1) improving intentions to integrate programming, and (2) actively devising

strategies to integrate programming.

Improving intentions to integrate programming. Almost all the interviewees’

(n = 5) intentions to integrate programming into teaching improved, as evidenced by each

of their responses to interview question #9: “Where do you position yourself in the

continuum of adding or not adding programming activities to your classes? Why?”. This

category is aligned to Theme 5 because it demonstrates how participants’ perspectives

changed on their intentions to integrate programming into teaching. Positive or negative

beliefs and experiences influence teachers’ intentions to integrate a technology into their

instruction (Ajzen, 2005). For example, Paula summarized in her interview how her

perception of programming’s usefulness changed:

Going into it when you first proposed the idea that we would be using

programming and stuff in this class I didn't really think that it would be useful at

all, like I didn't really understand how I can possibly even use it in teaching and

how it had anything to do with teaching, but obviously going through it I realized

like it is very useful so it's kind of done a complete 180 to be honest.

“I think it's more valuable now and I understand like why it helps students like learning

like through math and stuff,” Jennifer noted in her interview. Mariah remarked in her

interview that she now felt programming should be incorporated into schools even more

than it currently is: “So I originally thought like programming was like… it’s already in a

www.manaraa.com

159

lot of [local school district redacted]. OK, they're doing it now. I feel like it should be

incorporated just a little bit more.” These interview responses demonstrate participants’

improvement in their intentions to integrate programming into their teaching.

Participants’ current intentions to integrate that were articulated in the interviews

ranged from solid confirmations of intent to perceptions that participants needed to do

more research before integrating. For example, Mariah starkly stated in her interview, “I

want to add it.” Others expressed their desire to integrate programming into their

instruction but felt they needed further research into their future curriculum and

applicable connections first. For example, Katy expressed a more reserved or hesitant

intent to integrate programming, summarized in this interview statement:

Um, I can see it being used a lot with like math and science, especially for

younger kids. I feel like I haven't learned enough about it, but I can see the

potential for like how programming could possibly work out in classrooms.

She further elaborated: “I could really see myself adding this to my lesson plans,” and, “I

don't know exactly how it would fit in, but I know I could definitely like find a way once

I get their curriculum. Like I would love to find a way.” These responses demonstrate

participants’ range of encouraging programming integration intentions.

In summation, participants’ interview responses indicated that their intentions to

integrate programming into their teaching improved correspondingly with their

valuations of programming. Participants’ intentions included more reserved responses in

which participants affirmed they wanted to integrate programming but needed to learn

more about their curriculum or programming more generally before doing so, to decisive

intentions to integrate programming into their teaching. These improved, positive

www.manaraa.com

160

intentions among participants support this category’s theme that participants perceived

programming as a viable fit in their future classrooms.

Actively devising strategies to integrate programming. As outlined above,

many interviewees stated strong confirmations of their intentions to incorporate

programming in their future instruction. Positive attitudes about technology integration

have been shown to be the strongest predictor of whether teachers integrate instructional

strategies into their teaching (Palak & Walls, 2009). Ajzen (2005) suggested that a way to

assess teachers’ technology integration attitudes is through studying their behavior. One

behavior that demonstrated attitudes and technology integration potential of most of the

interviewees (n = 4) was that they had already brainstormed strategies for future

programming integration. Interviewees’ ideas for integration into their future curriculum

are related to Theme 5 because they show exactly how participants envisioned fitting

programming into their instruction.

Interviewees had multiple ideas for integrating programming into their future

instruction, including singular subjects as well as cross-curricular connections. “I feel like

there’s a lot of different ways to incorporate it,” posited Paula. Four interviewees shared

ideas for integrating programming with math. The use of educational robotics to

represent abstract math concepts was a commonality. Jennifer explained in her interview

that she would use programming to teach students the different parts of math equations.

Katy explained in her interview that she would use programming as an introduction to

technology for her elementary students to illustrate math problems. “So, like if you have

like one movement block and two movement blocks, it is going to move two blocks,” she

www.manaraa.com

161

explained. Paula also noted in her interview that she would use programming to illustrate

math in a more tangible way:

I want to teach second or third grade probably, and I feel like there's a lot of

different ways I could incorporate it. Probably with math even like using the

algorithms and stuff...

As an example of a cross-curricular integration, Randy had an idea to integrate math into

social studies through programming educational robotics. This detailed idea for a lesson

plan that he shared in his interview was not based on any priming from anything similar

that participants saw in the integration videos:

You could do like longitude and latitude. But you could do that…voyages of

different explorers. You could talk about the mileage, and you could actually kind

of have like on a scale, and I didn't think about it that way, but it was pretty

interesting. I guess I can go back to the example with um…about colonialization

in America. We can talk about the different, um, probably the different British

ships that came over and we could talk about how I guess like focusing for a little

bit on how long they took to travel and as far as like mileage and then we can do

like a fun activity with programming. A small activity that doesn't take too much

time but also gives the children some programming knowledge.

These integration ideas showed that participants could imagine both single-subject and

cross-curricular linkages in lesson plans they had already devised. These interview

excerpts that highlighted integration ideas firmly supported Theme 5 – participants

perceived programming as a viable fit in their future classrooms.

www.manaraa.com

162

Integrating Quantitative and Qualitative Findings

 The quantitative Programming Motivation Survey and qualitative individual

interview findings were combined to present a better representation of RQ#2 and the

intervention’s effects on preservice teachers’ motivation related to programming. To do

this, first, I interpreted the quantitative Programming Motivation Survey results. Then, I

compared these results with the qualitative individual interview themes. In this way, the

qualitative data offered additional explanation to what the quantitative results implied

(Creswell, 2014; Mertler, 2017). The quantitative and qualitative findings were grouped

by subscale, as demonstrated in Table 4.16. Then, these combined findings were used to

investigate research question #2: How and to what extent does educational robotics

influence preservice teachers’ motivation related to programming? Through this process,

I found that the quantitative data that denoted an increase in motivation in each of the

subscales was supported by the qualitative data. Further, the qualitative data offered

insights into participants’ statistical increases in motivation through statements describing

their experiences.

Through this method, the qualitative data and findings were used to emphasize

and detail the quantitative findings. The integrated quantitative and qualitative findings of

this study indicate that preservice teachers’ motivation related to programming can be

improved significantly through educational robotics’ influences on (1) intrinsic

motivation, (2) career motivation, (3) self-determination, (4) self-efficacy, and (5)

motivation to integrate programming into teaching.

www.manaraa.com

163

Table 4.16. Integrating Quantitative and Qualitative Findings – Motivation

Finding Quantitative Evidence Qualitative Evidence

Intrinsic

motivation

improved in

preservice

teachers

Intrinsic motivation increased

from the pre-survey (M = 2.23,

SD = 0.93) to the post-survey (M

= 3.11, SD = 0.96), t(17) = 4.26,

p = .001, Cohen’s d = 1.00.

Theme 1: Participants perceived

that a problem-based robotics

curriculum improved their

intrinsic motivation toward

programming.

Career

motivation

improved in

preservice

teachers

Career motivation medians

increased between pre-survey

career motivation (3) and post-

survey career motivation (3.72),

(Z = -3.58, p < .001, r = -.6).

Theme 2: Participants agreed that

knowing programming as a skill

had advantages as a teacher.

Self-

determination

improved in

preservice

teachers

Self-determination increased

from the pre-survey (M = 1.99,

SD = 0.98) to the post-survey (M

= 3.39, SD = 0.72), t(17) = 7.07,

p < .001, Cohen’s d = 1.67.

Theme 3: Participants

experienced self-determination

towards programming in the face

of robotics challenges.

Self-efficacy

increased in

preservice

teachers

Self-efficacy increased from the

pre-survey (M = 2.17, SD =

0.82) to post-survey (M = 3.47,

SD = 0.84), t(17) = 5.75, p <

.001, Cohen’s d = 1.36.

Theme 4: Participants perceived

that the gradually increasing level

of difficulty in the robotics

curriculum improved their self-

efficacy about programming from

initially low levels.

MTIPIT

improved in

preservice

teachers

MTIPIT increased from the pre-

survey (M = 2.59, SD = 1.04) to

the post-survey (M = 3.72, SD =

0.75), t(17) = 6.10, p < .001,

Cohen’s d = 1.20.

Theme 5: Participants perceived

programming as a viable fit in

their future classrooms.

Intrinsic Motivation

Quantitative findings showed that intrinsic motivation increased from the pre-

survey (M = 2.23, SD = 0.93) to the post-survey (M = 3.11, SD = 0.96), t(17) = 4.26, p =

.001, Cohen’s d = 1.00. Qualitative findings suggested that participants were intrinsically

motivated to complete programming tasks as they solved problems and used concrete

robots to represent abstract concepts. These combined findings indicated that educational

www.manaraa.com

164

robotics improve preservice teachers' motivation related to programming by affecting

their intrinsic motivation.

Career Motivation

Quantitative findings showed that career motivation medians increased between

pre-survey career motivation (3) and post-survey career motivation (3.72), (Z = -3.58, p <

.001, r = -.60). Qualitative findings suggested that participants were motivated to

complete programming tasks in order to give themselves more advantages or options in

job seeking and allow them to improve future teaching. These combined findings

indicated that educational robotics improve preservice teachers' motivation related to

programming by affecting their career motivation.

Self-Determination

Quantitative findings showed that self-determination increased from the pre-

survey (M = 1.99, SD = 0.98) to the post-survey (M = 3.39, SD = 0.72), t(17) = 7.07, p <

.001, Cohen’s d = 1.67. Qualitative findings suggested that participants were motivated to

complete programming tasks as they tried different options to solve problems and used

CPS strategies. These combined findings indicated that educational robotics improve

preservice teachers' motivation related to programming by affecting their self-

determination.

Self-Efficacy

Quantitative findings showed that self-efficacy increased from the pre-survey (M

= 10.83, SD = 4.08) to post-(M = 2.17, SD = 0.82) to post-survey (M = 3.47, SD = 0.84),

t(17) = 5.75, p < .001, Cohen’s d = 1.36. Qualitative findings suggested that participants

were motivated to complete programming tasks and were able to improve their initially

www.manaraa.com

165

low programming self-efficacy as a result of the gradually increasing level of difficulty of

the programming concepts in the instruction. These combined findings indicated that

educational robotics improve preservice teachers' motivation related to programming by

affecting their self-efficacy.

MTIPIT

Quantitative findings showed that MTIPIT increased from the pre-survey (M =

2.59, SD = 1.04) to the post-survey (M = 3.72, SD = 0.75), t(17) = 6.10, p < .001,

Cohen’s d = 1.20. Qualitative findings suggested that participants were motivated to

integrate programming into their instruction to the level that they had devised practical

strategies to do so. These combined findings indicated that educational robotics improve

preservice teachers' motivation related to programming by affecting their motivation to

integrate programming into their teaching.

Chapter Summary

This section reviewed the analysis and findings of this study. This study

employed both quantitative and qualitative data. Quantitative data from the Programming

Comprehension Assessment and the Programming Motivation Survey were analyzed

through paired sample t-tests. Findings associated with RQ#1 showed that participants’

overall comprehension of programming concepts significantly increased. Further,

participants’ comprehension of basic procedures, advanced procedures, control

structures, and variables significantly increased. Quantitative findings associated with

RQ#2 indicated that participants’ overall motivation related to programming increased.

Further, participants’ intrinsic motivation, career motivation, self-determination, self-

efficacy, and MTIPIT significantly increased. Qualitative data revealed five themes: (1)

www.manaraa.com

166

participants perceived that a problem-based robotics curriculum improved their intrinsic

motivation toward programming, (2) participants agreed that knowing programming as a

skill had advantages as a teacher, (3) participants experienced self-determination towards

programming in the face of robotics challenges, (4) participants perceived that the

gradually increasing level of difficulty in the robotics curriculum improved their self-

efficacy about programming from initially low levels, and (5) participants perceived

programming as a viable fit in their future classrooms.

The findings of this study indicate that educational robotics can be used to

significantly improve preservice teachers’ comprehension of programming concepts

related to (1) basic procedures, (2) advanced procedures, (3) control structures, and (4)

variables. The integrated quantitative and qualitative findings of this study indicate that

preservice teachers’ motivation related to programming can be improved significantly

through educational robotics’ influences on (1) intrinsic motivation, (2) career

motivation, (3) self-determination, (4) self-efficacy, and (5) motivation to integrate

programming into teaching.

www.manaraa.com

167

CHAPTER 5

DISCUSSION, IMPLICATIONS, AND LIMITATIONS

The purpose of this action research was to evaluate the effect educational robotics

have on programming comprehension and motivation of preservice teachers at a medium-

sized liberal arts university in the southeastern United States. Quantitative findings

indicated an increase in participants’ comprehension of programming concepts as well as

an increase in motivation related to programming. Qualitative data revealed five themes:

(1) participants perceived that a problem-based robotics curriculum improved their

intrinsic motivation toward programming, (2) participants agreed that knowing

programming as a skill had advantages as a teacher, (3) participants experienced self-

determination towards programming in the face of robotics challenges, (4) participants

perceived that the gradually increasing level of difficulty in the robotics curriculum

improved their self-efficacy about programming from initially low levels, and (5)

participants perceived programming as a viable fit in their future classrooms. Integrated

findings of this study suggest that preservice teachers’ comprehension of programming

concepts and motivation related to programming can be improved through educational

robotics. This chapter shares the (a) discussion, (b) implications, and (c) limitations of

this action research.

Discussion

The quantitative and qualitative data were combined to directly address the

research questions of this study: (1) What is the effect of educational robotics on

www.manaraa.com

168

preservice teachers’ comprehension of programming concepts? and (2) How and to what

extent does educational robotics influence preservice teachers' motivation related to

programming? To look at the big picture and compare this study’s results to previous

findings in the field, existing literature on programming, educational robotics, preservice,

and in-service teachers was used to guide these quantitative and qualitative findings. In

this section, comprehension of programming concepts will first be discussed, followed by

teachers’ motivation related to programming.

Research Question #1: What is the effect of educational robotics on preservice

teachers’ comprehension of programming concepts?

The findings of this study indicate that educational robotics can be used to

significantly improve preservice teachers’ comprehension of programming concepts

related to (1) basic procedures, (2) advanced procedures, (3) control structures, and (4)

variables. Comprehension of programming concepts, synthesized as programming

comprehension in this study, is described by Ala-Mutka (2004) as the “ability to track

code to build a mental model of the program and predict its behavior” (p. 5). Educational

literature has shown that comprehension can be demonstrated in multiple ways, either by

comparing, interpreting, describing, or organizing, among others (Bloom et al., 1956).

Ramalingam and Wiedenbeck (1997) have explained that programming comprehension

includes reading a program with the purpose of doing some further task, which

necessitates understanding.

Scores on the Programming Comprehension Assessment suggest that the

educational robotics had a positive impact on participants’ comprehension of

programming concepts. The paired sample t-test revealed that participants’ overall

www.manaraa.com

169

posttest scores (M = .58, SD = .24) were significantly higher than pretest scores (M = .21,

SD = .07), t(17) = 6.48, p < .001, Cohen’s d = 1.53. Participants entered the study with a

low level of programming comprehension. The lowest score on the pretest was a 5%, and

the highest was 40%. After the intervention, the participants’ scores increased

significantly. The lowest score on the posttest was 15%, and the highest was 90%. Not all

participants’ scores on the Programming Comprehension Assessment improved. Two

participants’ scores stayed the same, while one participant’s score decreased from the

pretest to the posttest. Although it is possible that these participants either did not learn

anything over the four weeks of the intervention’s instructional time or the educational

robotics intervention led to a decrease in their comprehension of programming concepts,

these low scores might also be attributed to other factors, like assessment apathy

(Thompson, 2008). While no participants achieved a perfect score on the Programming

Comprehension Assessment, there were five participants who scored 80% or higher on

the posttest. Altogether, these findings suggest that preservice teachers’ comprehension

of programming concepts can be improved through educational robotics.

The nearly unanimous positive results in this study confirm previous studies’

findings (Jaipal-Jamani & Angeli, 2017; Sullivan & Moriarty, 2009) on the

comprehension of programming concepts. Jaipal-Jamani and Angeli (2017) found that

their population of preservice elementary teachers had statistically significant differences

in programming knowledge between pre and posttests as the result of an educational

robotics intervention. This study’s results also confirm research by Sullivan and Moriarty

(2009), which indicated that in-service teachers’ understanding of programming

www.manaraa.com

170

increased from the no proficiency and low proficiency levels to the moderate and strong

proficiency levels after robotics workshops.

The findings of this study indicate that educational robotics can be used to

significantly improve preservice teachers’ comprehension of programming concepts

related to (1) basic procedures, (2) advanced procedures, (3) control structures, and (4)

variables. The next sections will present an analysis of the findings related to the

comprehension of programming concepts delineated by each unit of the Programming

Comprehension Assessment. These findings will then be discussed in relation to existing

literature.

Basic procedures. Basic procedures in programming include syntactic

programming concepts like the vocabulary, grammar, and format of a programming

language (Mayer, 1979) as well as sequencing, which Strawhacker and Bers (2015)

defined as “the idea that order matters when giving instructions” in programming (p.

297). The fact that participants’ comprehension of basic procedures increased

significantly from the pretest (Mdn. = .20, SD = .15) to posttest (Mdn. = .70, SD = .29)

indicated that there was a statistically significant effect in participants’ comprehension of

basic procedures concepts (Z = -3.30, p = .001, r = -.55). On the Basic Procedures unit,

participants improved from a 19% to a 59% on average. This section will discuss the

findings of the Basic Procedures unit and relate them to the existing literature.

The increase in comprehension of basic procedures might be explained best by

Ala-Mutka (2004) who suggested that “visualizing the basic programming structures” can

be beneficial to for novices in building their comprehension of programming (p. 6). The

educational robots’ actions allowed participants to visualize basic programming concepts

www.manaraa.com

171

for the participants. According to Pennington’s (1986) framework of programming

comprehension, mental representations based on experiences are layered on top of classic

language comprehension. Through Pennington’s (1986) framework, novices visualize the

programming functions in a more concrete form, adding operational mental models to the

programming language through the visualizations. Visualizing programming in concrete

form through educational robotics could account for participants’ improvements to their

programming comprehension as functional knowledge could have been layered onto state

knowledge and operations knowledge.

Despite research by Kim et al. (2018), which noted that “participants omitted

commands that were necessary for the robot to perform as planned” (p. 772), the results

of this study, particularly in question #3 (Gain = .72), were different. This difference

might stem from Kim et al. (2018) using a different block-based programming language

that was less intuitive for their participants than the EV3-G programming language used

in this study to demonstrate comprehension of the syntactic aspects of programming.

Another possibility is that the activities and challenges in this study improved the

proficiency of participants in basic programming procedures beyond the level of

comprehension of participants in the Kim et al. (2018) study. This study provides

additional research to compliment Kim et al.’s (2018) findings and add to the limited

literature on preservice teachers’ comprehension of basic programming procedures.

In addition, Kim et al. (2018) found that preservice teachers exhibited difficulty

with debugging a block-based programming language while programming robots.

Jayathirtha, Fields, and Kafai (2018) have explained that debugging “can reveal

significant information about student learning” (p. 1). Kim et al. (2018) noted that

www.manaraa.com

172

debugging was “indeed difficult for preservice teachers” as an overarching finding of

their study. In the Basic Procedures unit, the question participants scored the lowest on

was a question that assessed participants’ abilities to spot an error in a program.

Participants answered question #4 correctly on the posttest only 28% of the time (Gain =

.06). While one question specifically addressing debugging in this section might not have

extensively assessed participants’ debugging skills, it offered insight into participants’

comprehension scores on this unit and was informed by prior studies utilizing one

specific debugging question (Jaipal-Jamani & Angeli, 2017; Lister et al., 2004). These

findings parallel those by Kim et al. (2018), who found that preservice teachers struggled

with debugging. Kim et al. (2018) theorized that it is difficult for even those who are

advanced programmers to debug a program as “it requires mindful, persistent

engagement” (p. 769). Similarly, Falloon (2016) noted that debugging was a complicated

process because it necessitates perseverance and a systemic approach, which is often

discounted by students who adopt random, unsystematic, hasty approaches. There is little

research on debugging in block-based programming languages (Kim et al., 2017, 2018);

therefore, it is my supposition that participants’ scores might not have improved as much

as in other units because they did not adopt disciplined, systematic debugging

approaches.

Overall, scores on the Basic Procedures unit indicated that educational robotics

had a positive effect on preservice teachers’ comprehension of programming concepts.

The Basic Procedures unit had the second-highest increase out of all the units, slightly

behind the Advanced Procedures unit. While data show significant gains from the pretest

to posttest, participants’ scores on this unit suggest an incomplete understanding of

www.manaraa.com

173

fundamental programming procedures related to debugging. Existing literature (Falloon,

2016; Kim et al., 2017, 2018), in combination with this study’s results, suggests that

while educational robotics can be used to increase preservice teachers’ comprehension of

basic procedures in programming, debugging remains a difficult skillset for this

population.

Advanced procedures. Advanced procedures are defined by Pea and Kurland

(1984) as “higher level executive and metaplanning decisions such as what strategic

approach to take to the problem” (p. 160). Advanced procedures combine syntactic and

semantic programming knowledge into strategic programming decisions (McGill &

Volet, 1997). Participants’ comprehension of advanced procedures increased significantly

from the pretest (Mdn. = .20, SD = .18) to posttest (Mdn. = .70, SD = .30) and indicated

that there was a statistically significant effect in participants’ comprehension of advanced

procedures concepts (Z = -3.43, p = .001, r = -.57). This section will discuss the findings

of the Advanced Procedures unit and situate them within the existing literature.

Participants’ average posttest scores were the highest on the Advanced Procedures

unit. This unit also showed the greatest increase out of all the units from an average of

22% on the pretest to 66% on the posttest. The Advanced Procedures unit showing the

greatest increase among all the units – even over Basic Procedures – may be explained by

schema theory (Kalyuga, 2010; Sweller, 1994). Previously learned Basic Procedures unit

concepts filed as long-term memory may have been updated with conceptually similar,

yet new Advanced Procedures unit schema, adding to the participants’ programming

comprehension. Chunks associated with previous knowledge from the Basic Procedures

unit were updated with new schemas as new material was learned, which contributed

www.manaraa.com

174

towards a deeper understanding of those concepts (Sweller, 1994). Because Advanced

Procedures concepts built on Basic Procedures concepts, the participants could rely on

previous knowledge, which contributed toward a deeper comprehension and a larger

increase on the Programming Comprehension Assessment.

Scores on the Advanced Procedures unit indicated that educational robotics had a

positive effect on preservice teachers’ comprehension of programming concepts. The

findings on the Advanced Procedures unit echo those by Kay et al. (2014). In their

research, Kay et al. (2014) indicated that their mixed in-service and preservice

participants’ (N = 22) correct answers on the movement programming question of their

content knowledge assessment that conceptually aligned to this study’s Advanced

Procedures unit increased dramatically. In Kay et al.’s (2014) study, participants’ scores

increased from 40% to 100% after three days of robotics workshops.

The question with the largest average improvement was question #9 (Gain = .61),

which participants answered correctly over 66% of the time on the posttest. Question #9

assessed participants’ syntactic and semantic comprehension of programming turns. This

data might suggest that participants were comfortable with combining syntactic and

semantic programming comprehension to solve problems. The mazes utilized in the

study’s Advanced Procedures unit exercised the skills participants needed to solve

question #9. Thus, qualitative findings in Theme 1 – participants perceived that a

problem-based robotics curriculum improved their intrinsic motivation toward

programming – could provide an explanation of the motivational increase in the

Advanced Procedures unit. In the individual interviews, the Maze Challenge from the

Advanced Procedures unit of instruction was the most-noted fun and enjoyable

www.manaraa.com

175

curriculum element. My speculation is that because the highly enjoyed Maze Challenge

was embedded within the instructional unit that had the highest comprehension

improvement (Advanced Procedures) it may indicate that the Maze Challenge motivated

participants to learn and contributed toward participants’ leap in comprehension within

that unit.

A question with the lowest average on the posttest was question #8. This question

assessed participants’ abilities to pick out the program which included the correct

strategic programming to move a robot along a path that includes the hypotenuse of a

triangle. This data indicated that participants had a shallow comprehension of strategic

programming within the Advanced Procedures unit. One possible reason for the low

scores on this question might be that the introduction of the Pythagorean Theorem (i.e., a2

+ b2 = c2) confused participants. However, deductive reasoning and code tracking could

be used to eliminate incorrect answers to this question. Therefore, participants might

simply have mis-tracked the program from start to finish. Further data on this question is

needed to inform future teaching and assessment.

Participants’ posttest scores were significantly higher than their pretest scores on

the Advanced Procedures unit. Further, participants’ average posttest scores were the

highest out of all units. Overall, these collective findings suggest that educational robotics

can be used to significantly increase preservice teachers’ comprehension of advanced

programming procedures.

Control structures. Control structures – also known as conditionals or flow

control – include programming concepts such as loops and switches that guide the course

of action within a program based on special instructions (Bers et al., 2014). Participants’

www.manaraa.com

176

comprehension of control structures increased from the pretest (M = .26, SD = .17) to the

posttest (M = .58, SD = .26), t(17) = 4.68, p < .001, Cohen’s d = 1.10. While participants’

scores increased significantly on the Control Structures unit which indicated that

educational robotics had a positive effect on preservice teachers’ comprehension of

programming concepts, this increase was less pronounced compared to other units. This

section will discuss the findings of this study related to the Control Structures unit and

connect these findings to existing literature.

Participants’ average scores on this unit indicated a significant increase, but they

reflected a limited comprehension of control structures in general. Conceptually, the

Control Structures unit was designed as the second-most complex topic of the instruction,

and the unit’s posttest scores were fittingly the second lowest on average (M = .58, SD =

.26). Similarly, studies that used text-based programming languages (Ahmadzadeh et al.,

2007; Fitzgerald et al., 2008) as well as block-based programming languages (Chiu &

Huang, 2015; Kim et al., 2018) have pointed to participants’ most produced errors

occurring in control structures concepts. One-third of the interviewees (n = 2) commented

that the Control Structures concepts were difficult and needed more time dedicated to

them in the instruction. This research corroborated Kim et al.’s (2018) findings which

indicated that preservice teachers often struggled with “improperly defined conditionals”

(p. 772). Therefore, while the increase in this unit was significant, participants exhibited a

lower increase than in other units.

This unit’s lower increase may be attributed to participants’ struggles with

multiple loops. Kim et al. (2018) explained that preservice teachers incorrectly designed

their programs, “omitting loop or other commands that had to be included to complete the

www.manaraa.com

177

program” (p. 772). This study’s findings indicated that preservice teachers had trouble

with multiple loops in particular. To explain, the question with the largest improvement

in the unit was #15 (Gain = .44), which assessed participants’ abilities to modify a single

loop in an algorithm to execute a specific route for the robot. My speculation is that

participants scored highly on this question due to its relative simplicity in only utilizing

one loop. In addition, question #12 had the lowest gain (.17) out of all the questions on

the unit, possibly because it had the highest pretest average score out of all the questions

on the assessment (.56). This question required participants to correctly simplify a

program using a single loop. This data indicated that over half the participants had an

initial comprehension of the concept of looping. However, when participants were given

multiple loops, they struggled. For example, question #11 addressed multiple loops and

had the lowest average score on the posttest in the unit (.39). This question evaluated

participants’ abilities to trace a program and determine its outcome using multiple loops.

Therefore, participants demonstrated competency and comprehension of simplifying

programs using one loop but had difficulty tracing the outcome of programs utilizing

multiple loops.

Participants’ scores increased significantly on the Control Structures unit which

indicated that educational robotics had a positive effect on preservice teachers’

comprehension of programming concepts. However, this increase was the second lowest

of all units. Participants excelled with problems featuring a single loop but struggled with

tracing multiple loops in an algorithm. In sum, these findings suggest that educational

robotics can be used to significantly increase preservice teachers’ comprehension of the

www.manaraa.com

178

control structures; however, this population struggles with depth of comprehension of

looping.

Variables. Variables are values in a program that can change based on different

instructions and inputs within the program. Participants’ comprehension of variables

increased from the pretest (M = .19, SD = .17) to the posttest (M = .51, SD = .32), t(17) =

3.69, p = .002, Cohen’s d = .87. This section will discuss the findings related to the

Variables unit and relate these findings to existing literature.

The increase in variable comprehension by participants in this study may be best

explained by the visualization and concrete modeling of programming through the

actions of the robots. According to Ala-Mutka (2004) recursion, or the use of loops with

variables to complete smaller tasks that reiterate to complete a larger task, is a

programming concept which can be taught through visualizations “on [a] high level” (p.

8). Mayer’s (1981) programming comprehension model which borrowed concepts from

the IPM (Newell & Simon, 1972) was used by Bayman and Mayer (1983) to evaluate

programming comprehension. As a result of their study, Bayman and Mayer (1983)

determined that novices learning programming required more concrete models of

programs to understand abstract programming functions.

Variables are often considered difficult to comprehend by novices (Grover &

Basu, 2017; Kuittinen & Sajaniemi, 2004), and the Variables unit of instruction was

correspondingly the most advanced of the intervention. Therefore, it is fitting that this

unit had the lowest pretest (M = .19, SD = .17) and posttest (M = .51, SD = .32) scores on

average. While scores increased significantly, these data suggest that participants did not

have as deep of a comprehension of variables as other programming concepts. This study

www.manaraa.com

179

confirms Kim et al.’s (2018) findings that preservice teachers commonly demonstrate

errors in defining values of variables while programming robots and Govender and

Grayson’s (2008) findings that in-service and preservice teachers find the concept of

variables confusing. In their study that utilized block-based programming, Grover and

Basu (2017) noted that beginners had difficulty with using “mathematical and logical

expressions, naming variables, and assigning suitable data types and structures” (p. 268).

Further, variables can be difficult to define by teachers, as Meerbaum-Salant et al. (2013)

found. In their study, Meerbaum-Salant et al. (2013) observed that mathematics teachers

and computer science teachers had different conceptual understandings of variables.

Meerbaum-Salant et al. (2013) attributed the inaccurate mathematics conceptual

understanding of variables to the math students’ struggles with the concept. Govender

and Grayson (2008) found that their mixed group of in-service and preservice teachers

learning to program in Java, a text-based programming language, felt that variables were

confusing and complicated.

The question with the largest improvement was #17. This question assessed

participants’ comprehension of variables’ syntactic and semantic elements within a

switch in a program. While this question required participants to track a program through

a switch and then use their syntactic and semantic programming comprehension,

participants only had to explain the variable’s influence on the program. Explaining falls

under the middle analyzing tier of Bloom’s Taxonomy, a continuum of ways in which

students can demonstrate understanding arranged from simple to complex (Anderson,

Krathwohl, & Bloom, 2001). Therefore, this question might have been less difficult to

complete than the others in the unit.

www.manaraa.com

180

The final question, #20, was answered correctly only 22% of the time on the

posttest. This question also demonstrated the smallest gain from pretest to posttest (Gain

= .17). This question was the most difficult of the assessment as it required participants to

understand variables as well as apply all the other programming concepts of the

intervention to fill in appropriate values to execute a program. This low increase might be

attributed to this question requiring participants to create a program with different values

in a fill-in-the-blank format. Creating is the highest tier, and the most complex way

students can demonstrate understanding in Bloom’s Taxonomy (Anderson et al., 2001).

Therefore, this question was fundamentally complex, which might have led to its low

increase.

While the average scores did increase significantly for the Variables unit, they did

not increase to the extent of the other units. One-third of the interviewees (n = 2)

mentioned that the concept of variables was difficult for them. Overall, these findings

suggest that educational robotics can be used to increase preservice teachers’

comprehension of variables but to a lesser extent than other programming concepts due to

the difficulty in obtaining a high-level understanding of relevant concepts.

Research Question #2: How and to what extent does educational robotics influence

preservice teachers’ motivation related to programming?

The integrated quantitative and qualitative findings of this study indicate that

preservice teachers’ motivation related to programming can be improved significantly

through educational robotics’ influences on (1) intrinsic motivation, (2) career

motivation, (3) self-determination, (4) self-efficacy, and (5) motivation to integrate

programming into teaching. Both quantitative and qualitative data were gathered to

www.manaraa.com

181

investigate the research question addressing motivation. Motivation is described by Johns

(1996) as the extent to which persistent effort is sustained toward a specific goal.

Motivation is an abstract concept that is comprised of many different indicators (Ball,

1977; Jenkins & Davy, 2002; Law et al., 2010).

Participants’ overall motivation increased from the pre-survey (M = 2.38, SD =

0.84) to the post-survey (M = 3.48, SD = 0.64), t(17) = 6.10, p < .001, Cohen’s d = 1.44.

Participants entered the study with low motivation related to programming. The lowest

average Likert scale level of motivation on the pre-survey was 1.32/5, and the highest

was 3.92/5 (M = 2.38, SD = 0.84). After the intervention, participants’ average

motivation levels increased significantly. The lowest average motivation conveyed on the

post Programming Motivation Survey was 2.24/5, and the highest was 4.68/5 (M = 3.48,

SD = 0.64). However, not all participants’ motivation levels on the Programming

Motivation Survey improved. While 17 of the 18 participants experienced gains in their

motivation, one participant’s motivation level decreased from the pre-survey to the post-

survey. My speculation is that one participant did not find educational robotics to be

motivational. None of the participants’ motivation levels remained the same. These 17 of

18 increased levels of agreement on Likert scale statements in the Programming

Motivation Survey suggest that the educational robotics positively impacted participants’

motivation related to programming.

Quantitative findings explain that educational robotics positively influence

preservice teachers’ motivation related to programming to statistically significant extents.

Qualitative themes explained and reinforced that educational robotics positively influence

preservice teachers’ motivation related to programming through (1) Intrinsic Motivation,

www.manaraa.com

182

(2) Career Motivation, (3) Self-Determination, (4) Self-Efficacy, and (5) MTIPIT. These

combined findings suggest that preservice teachers’ motivation related to programming

can be improved through educational robotics. The following paragraphs will discuss

participants’ motivation related to programming by comparing the qualitative themes

with the quantitative survey findings.

Intrinsic motivation. Integrated findings of this study (see Table 4.16) indicated

that intrinsic motivation improved in preservice teachers. Intrinsic motivation is one’s

internal drive to complete tasks (Deci & Ryan, 2000; Taylor, 1916). Enjoyment of and

interest in a task link are linked to intrinsic motivation (Deci & Ryan, 2000; Law et al.,

2010). Preservice teacher participants in studies by Kucuk and Sisman (2018) and Kim et

al., (2015, 2018) emphasized the importance of maintaining their intrinsic motivation

throughout the robotics activities. This section will discuss the findings of this study

related to the quantitative Intrinsic Motivation subscale and Theme 1 in the qualitative

findings – participants perceived that a problem-based robotics curriculum improved their

intrinsic motivation toward programming – and relate them to the existing literature.

Participants’ intrinsic motivation significantly increased from the pre-survey (M =

2.23, SD = 0.93) to the post-survey (M = 3.11, SD = 0.96), t(17) = 4.26, p = .001,

Cohen’s d = 1.00. Interview data affirmed and explained participants’ growth of intrinsic

motivation. Theme 1 from the qualitative data indicated that intrinsic motivation

appeared to be substantially impacted by the intervention’s use of problems in the form of

robotics programming activities and challenges. All interviewees (n = 6) indicated that

the activities and challenges were intrinsically motivational. In particular, the Maze

Challenge and Maze Challenge with Variables were reported to be motivating to

www.manaraa.com

183

participants. It can be logically inferred that the activities and challenges using the

educational robotics increased participants’ total intrinsic motivation.

This study provides results that are consistent with previous research (Kim et al.,

2015, 2018; Kucuk & Sisman, 2018) that found that preservice teachers perceived

educational robotics to be intrinsically motivating while learning to program. This study’s

combined findings paralleled those of Kucuk and Sisman (2018), who found that their

preservice teacher population considered educational robotics activities and learning by

doing to be fun. This study’s findings support those of Kim et al. (2015, 2018) and Kucuk

and Sisman (2018) while also extending their findings by pinpointing high intrinsic

motivation gains by participants in the areas of interest and enjoyment. On the

Programming Motivation Survey, intrinsic motivation exhibited the largest average

increases in two statements: #3 “Learning programming is interesting” and #19 “I enjoy

learning programming” (Gain = 1.27). On the post-survey, participants also had the

highest level of agreement with statement #3 within the Intrinsic Motivation subscale

(3.78/5). Theme 1 explained that participants experienced increased interest and

enjoyment due to the problems they solved. Kopcha et al. (2017) explained that authentic

problems afford learners opportunities to solve the problem based on the lessons they

learned through real-life scenarios. Different interviewees used words like “fun,”

“enjoyable,” and “interesting” to describe the challenges.

Educational robotics can be used to demonstrate physical representations of

abstract concepts, such as equations (Han, 2013). Theme 1 also explained that

participants were interested in the representation of abstract concepts in concrete form

through the educational robotics curriculum, which boosted their intrinsic motivation

www.manaraa.com

184

levels. This finding is supported by the research of Bayman and Mayer (1983) that

investigated Mayer’s (1981) model of programming comprehension and suggested that

novice programmers should be given concrete models of programs in order to build their

mental models. Piaget (1967, 1973) explained that constructivism is the building of

abstract knowledge structures in one’s mind through concrete experiences. Therefore,

participants were intrinsically motivated by constructivist processes of representing

abstract concepts in concrete form through educational robotics.

These quantitative and qualitative findings on intrinsic motivation reinforce those

by Kim et al. (2015, 2018) and Kucuk and Sisman (2018), which stated that educational

robotics are intrinsically motivating for preservice teachers. Further, this study adds to the

literature on preservice teachers learning programming through educational robotics by

explaining that preservice teachers’ intrinsic motivation can be boosted by implementing

authentic problem-solving challenges and representing abstract concepts in concrete

form.

In summation, quantitative data indicated significant gains in participants’

intrinsic motivation in the areas of interest and enjoyment. These results were confirmed

and explained by the qualitative data, which indicated that authentic problem-solving

through educational robotics activities and challenges, as well as representing abstract

math in concrete form, boosted participants’ interest and enjoyment. Existing literature

(Kim et al., 2015, 2018; Kucuk & Sisman, 2018), in combination with this study’s

results, suggest that educational robotics can be used to increase preservice teachers’

intrinsic motivation related to programming.

www.manaraa.com

185

Career motivation. Integrated findings of this study (see Table 4.16) indicated

that career motivation improved in preservice teachers. Career motivation includes one’s

beliefs of a topic’s career relevance as well as one’s effort to enhance their career

possibilities (Arwood, 2004; Glynn et al., 2009). While careers are often associated with

extrinsic factors such as money, Glynn et al. (2009, 2011) found a close relationship

between intrinsic motivation and career motivation in science. This section will discuss

the findings of this study related to the quantitative Career Motivation subscale and

Theme 2 in the qualitative findings and relate them to the existing literature.

The medians of the pre-survey (Mdn. = 3) Career Motivation and post-survey

(Mdn. = 3.72) Career Motivation increased significantly (Z = -3.58, p < .001, r = -.6).

Career Motivation was tied for the highest average agreement level on the post-survey (M

= 3.72, SD = 0.59) with MTIPIT. However, the Career Motivation subscale also

exhibited the lowest subscale increase, which could be attributed to participants having

high agreement with the statements in this subscale on the pre-survey. Participants’

career motivation only increased on average from 2.94 to 3.72 (Gain = .78). Qualitative

interview data in Theme 2 – Educational robotics affected participants’ career motivation

towards programming – supported the quantitative data by describing participants’ high

levels of career motivation. For example, participants noted that teachers who could teach

programming were in “high demand,” as Jennifer explained. These data indicated

increased career motivation among participants.

Research by Kim et al. (2015) found that preservice teachers who learned

programming through educational robotics had a small but meaningful increase in their

interest in STEM careers. Although this increase was relatively low, Kim et al. (2015)

www.manaraa.com

186

categorized this finding as “noteworthy considering that their career goals were already

set to become an early childhood educator” (p. 27). The findings of this study run parallel

to those of Kim et al. (2015) and are also noteworthy because participants’ highest

combined pre and post motivation levels were in the Career Motivation subscale even

though none of them were on a path to become computer science teachers. Career

motivation increased most dramatically on statement #23, “My career will involve

programming” (Gain = 1.22). In Theme 2, many participants voiced their perspectives

that schools and the economy were moving toward more technology-rich futures. The

large increase for this subscale could be attributed to the intervention’s use of different

lectures about new state standards for K-8 computer science as well as videos showcasing

how teachers are implementing computer science into their instruction. While high pre-

survey career motivation indicated that participants were cognizant of the current and

future outlook of the economy before they took part in the intervention, they may not

have been informed about the relevance and imminence of computer science standards

for the grade level they plan to teach. The statement with the lowest increase in career

motivation between pre and post was statement #10 (Gain = .44), “Knowing

programming will give me a career advantage.” This lower increase could be attributed to

how high participants’ level of agreement was on this statement on both the pre-survey

and post-survey. Participants’ pre-survey level of agreement (3.67/5) was the highest

initial level of agreement of the subscale. Correspondingly, their post level of agreement

(4.11/5) was also the highest level of agreement within the subscale on the post-survey.

Again, this small increase is noteworthy, as described by Kim et al. (2015), because

participants’ career motivation was already high, and the educational robotics

www.manaraa.com

187

intervention increased that high career motivation even more. These high levels are

reflected in Theme 2. Participants stated that learning programming would give them

career advantages in the interviews. For example, Simon explained that the ability to

walk into a teaching interview with programming as a skill on a resume “goes a long

way.” These findings demonstrate that participants exhibited increases in their already

high career motivation related to programming.

The qualitative findings from Theme 2 can add to the literature about preservice

teachers’ career motivation. Theme 2 offers insights into the reasons preservice teachers

experience increased career motivation. Theme 2 presented two categories of preservice

teachers’ career motivation: (1) to give themselves more advantages or options in job

seeking, and (2) to expand their skillsets for teaching their future students. These

categories can be used by preservice teacher educators as they design their curricula to

boost career motivation.

The combined quantitative and qualitative findings of this study indicated

significant gains in participants’ career motivation. However, because participants

initially rated the Career Motivation subscale statements at such a high level, gains were

not as large as in other subscales. It is my supposition that because all the participants in

this study (N = 18) were between the ages of 18 and 23, it is likely that the increasing

importance of technology that they have experienced in their own lifetimes has led them

to share such high pre-survey career motivation related to programming. The

instructional materials showcasing the new state computer science standards and data on

jobs in the computer science field further increased this high career motivation related to

programming. Existing literature, in combination with this study’s results, suggest that

www.manaraa.com

188

preservice teachers’ career motivation related to programming can be increased through

educational robotics.

Self-determination. Integrated findings of this study (see Table 4.16) indicated

that self-determination improved in preservice teachers. Self-determination is the control

learners have over their learning and includes autonomy, competence, and relatedness

(Black & Deci, 2000; Cullen & Greene, 2011; Ryan & Deci, 2020). Research by McGill

(2012) found that college students struggled to identify the relevance of learning

programming using educational robotics to their daily lives. This section will discuss the

findings of this study related to the quantitative Self-Determination subscale as well as

Theme 3 in the qualitative findings – participants experienced self-determination towards

programming in the face of robotics challenges – and relate them to the existing

literature.

Participants demonstrated the largest increase to their motivation in the subscale

of Self-Determination. Participants’ self-determination increased significantly the pre-

survey (M = 1.99, SD = 0.98) to the post-survey (M = 3.39, SD = 0.72), t(17) = 7.07, p <

.001, Cohen’s d = 1.67. Cullen and Greene (2011) noted that “consistent with Self-

Determination Theory in that in order to be motivated to achieve a goal” related to

technology integration, preservice teachers “must feel competent and able to do the task

at hand” (p. 42). Self-determination can be improved through confidence-building (Ryan

& Deci, 2000, 2020). Participants’ building of competence likely contributed to their

large increase in self-determination. All but one participant (n = 17) demonstrated

improved comprehension of programming concepts between the pre and post

Programming Comprehension Assessment. These increases improved perceptions of

www.manaraa.com

189

competence among participants. The competence of participants may have been most

directly impacted by the achievement of completing the different activities and

challenges in the intervention. For example, Mariah and Randy stated that by

accomplishing the different challenges, they increased their competence and confidence.

These combined quantitative and qualitative findings are concordant with those of Cullen

and Greene (2011).

Kim et al. (2015) found that preservice teachers put in more effort when they

encountered difficulties while programming educational robotics. According to Kim et al.

(2015), one of the methods the preservice teachers used to solve problems was “seeking

help from peers” by “exchanging ideas, questioning, and answering questions in

collaborative small groups” (p. 26). Self-determination increased most dramatically on

statement #5, “I put enough effort into learning programming” (Gain = 1.89). This

statement also had the highest agreement on the post-survey (4.17/5) among the Self-

Determination subscale statements. Qualitative data from Theme 3 indicated that

participants used multiple different CPS strategies (Roschelle & Teasley, 1994) when

they encountered difficulty. For instance, participants noted in the interviews

brainstorming with partners and approaching other groups for help were ways they put

extra effort into learning programming. It can be inferred that the CPS strategies

described by participants in the qualitative findings reflect participants’ quantitative

increase in their satisfaction level with their effort while learning programming. This

study’s combined quantitative and qualitative findings of effort and CPS strategies

between groups confirm Kim et al.’s (2015) findings that preservice teachers using

educational robotics put in more effort to solve problems through collaboration.

www.manaraa.com

190

Overall, participants displayed the largest increases in this subscale. Participants’

large increases in competence and confidence correlated with their large increases in self-

determination (Cullen & Greene, 2011). The quantitative data was supported by the

qualitative data from Theme 3. Qualitative evidence supported the findings of Kim et al.

(2015) that preservice teachers’ extra effort while learning programming through robotics

occurred through CPS strategies. Existing literature paired with this study’s findings

indicated that preservice teachers’ self-determination related to programming could be

increased through educational robotics.

Self-efficacy. Integrated findings of this study (see Table 4.16) indicated that self-

efficacy improved in preservice teachers. Self-efficacy is defined as learners’ beliefs in

their abilities to achieve a learning task (Bandura, 1997; Martin, 2007). Self-efficacy can

be improved through learners experiencing success completing similar tasks (Bandura,

1997). Self-efficacy has been found to be low with educators teaching computer science

concepts (Grover & Pea, 2013). Contributing factors to teachers’ low self-efficacy

include anxiousness with learning how to use new technologies in class (Meerbaum-

Salant et al., 2013) and using new and unfamiliar teaching materials (Curzon et al.,

2009). Self-efficacy can impact teachers’ usage of technology in the classroom (Ertmer &

Ottenbreit-Leftwich, 2010; Ertmer et al., 2012), and teachers with higher levels of self-

efficacy are more committed to teaching (Chen & Yeung, 2015; Gunning & Mensah,

2011). This section will discuss the findings of this study related to the quantitative Self-

Efficacy subscale and Theme 4 – participants perceived that the gradually increasing

level of difficulty in the robotics curriculum improved their self-efficacy about

www.manaraa.com

191

programming from initially low levels – in the qualitative findings and relate them to the

existing literature.

Participants’ exhibited the second-largest increase in the subscale of Self-

Efficacy. Participants’ self-efficacy increased significantly from the pre-survey (M =

2.17, SD = 0.82) to post-survey (M = 3.47, SD = 0.84), t(17) = 5.75, p < .001, Cohen’s d

= 1.36. The factors of past experiences, observed experiences, coaching, visualization of

future success, and experience of physical and emotional states contribute toward self-

efficacy (Bandura, 1997; Martin, 2007). Evidence from Theme 4 – participants perceived

that the gradually increasing level of difficulty in the robotics curriculum improved their

self-efficacy about programming from initially low levels – supported the participants’

increased quantitative self-efficacy.

This study’s self-efficacy findings parallel the literature. For example, research by

Jaipal-Jamani and Angeli (2017) indicated that educational robotics could improve

preservice teachers’ self-efficacy pertaining to programming. Further, Kay et al.’s (2014)

findings centered on confidence and found that in-service teachers’ self-efficacy related

to learning and teaching programming improved through the use of educational robotics.

Kay et al.’s (2014) findings indicated that 95% of participants were quite or extremely

confident in learning to program while 100% were quite or extremely confident with

teaching programming after three days of robotics workshop. In this study’s Self-Efficacy

subscale, participants’ agreement levels increased most dramatically on statement #4, “I

am confident in learning programming” (Gain = 1.83) on the Programming Motivation

Survey. Pre-survey responses to the statements in this subscale were low, which could be

attributed to this being all but one of the participants’ first experiences with

www.manaraa.com

192

programming. Research by Rogerson and Scott (2010) explained that students often

exhibit apprehension and fear related to programming, which in turn can cause negative

perceptions of programming. Participants’ initial lack of confidence in learning

programming could be attributed to what Rogerson and Scott (2010) described as “the

nature of programming that gives rise to [negative] feelings” (p. 147). Once participants

experienced programming through the educational robotics, their fears were diminished,

and their confidence improved. Most qualitative data that demonstrated participants’

increased confidence came from their explanations of their improved programming

comprehension. As described in Theme 4, participants used words such as “zero” or a

“blank slate” to define their initial programming comprehension and self-efficacy. This

study echoed findings by Bower et al. (2017) that reported that teacher participants had

low levels of self-confidence in teaching computational thinking. However, most

participants interviewed in this study stated that their perceptions of their programming

comprehension improved. For example, Paula explained that on a scale of “one to 10, I

am probably a seven” up from an initial level of zero. The quantitative increases in

confidence on the Self-Efficacy subscale are supported by the participants’ qualitative

remarks about increased competence and confidence.

This study can offer additional insights into factors that foster preservice teachers’

self-efficacy related to programming. While Jaipal-Jamani and Angeli (2017) and Kay et

al. (2014) noted their participants’ increases in self-efficacy, these increases were

uncovered through quantitative analyses without attribution of the increases to specific

factors. Qualitative evidence from Theme 4 attributed the participants’ enhanced self-

efficacy to the curriculum’s design of gradually increasing the level of difficulty of the

www.manaraa.com

193

concepts in the units. For example, Katy pointed out, “You're really helping conceptually

building the foundations of like the other stuff that we learned.” Kuittinen and Sajaniemi

(2004) noted that within constructivist teaching, it is “necessary that new knowledge is

actively built on the top of existing knowledge” (p. 58). When teaching programming,

Kuittinen and Sajaniemi (2004) explained, “It is important that the introduction of a new

role is built on the top of existing information and that the distinction between the roles is

explained properly,” which builds on the conceptual foundations of previous learning,

moving the learner toward more difficult concepts (p. 58). The findings of this study

extend the findings of Jaipal-Jamani and Angeli (2017) and Kay et al. (2014) by

revealing a factor that can increase preservice teachers’ self-efficacy related to

programming. Utilizing a curriculum with a gradually increasing difficulty level when

teaching programming has been recommended in a conceptual piece in the literature

(Kuittinen & Sajaniemi, 2004), but without study data supporting this teaching strategy.

The insight into self-efficacy provided by this study can be used to guide preservice

teacher educators as they design curricula to improve their students’ self-efficacy related

to programming by slowly and carefully increasing the difficulty of the concepts covered

in the instruction.

In sum, quantitative and qualitative data from this study indicated significant

gains in participants’ self-efficacy. Participants initially held low levels of self-efficacy

related to programming. Participants’ qualitative data indicated that they overcame fear,

which boosted their confidence related to programming. This study confirmed findings

by Bower et al. (2017), who reported their teacher participants had low levels of self-

confidence in teaching computational thinking. In addition, this study’s combined

www.manaraa.com

194

quantitative and qualitative findings reinforced those by Jaipal-Jamani and Angeli (2017)

and Kay et al. (2014) and extended the available literature by providing qualitative data

which noted that preservice teachers’ self-efficacy related to programming could be

improved through a curriculum that gradually increases in difficulty. Existing literature

paired with this study’s findings indicated that preservice teachers’ self-efficacy related

to programming could be increased through educational robotics.

Motivation to integrate programming into teaching (MTIPIT). Integrated

findings of this study (see Table 4.16) indicated that MTIPIT improved in preservice

teachers. The MTIPIT subscale analyzed the reasons an individual wanted or did not

want to use and teach programming based on intrinsic, extrinsic, altruistic, and contextual

factors. MTIPIT was based on teacher motivation, which Han and Yin (2016) explained

as including the factors of teachers’ inherent interest in teaching, their lifelong

commitment to teaching, as well as discouraging factors such as bad experiences with

teaching. This section will discuss the findings of this study related to the quantitative

MTIPIT subscale and Theme 5 in the qualitative findings – participants perceived

programming as a viable fit in their future classrooms – and relate them to the existing

literature.

Participants’ MTIPIT increased significantly from the pre-survey (M = 2.59, SD =

1.04) to the post-survey (M = 3.72, SD = 0.75), t(17) = 5.09, p < .001, Cohen’s d = 1.20.

The post-survey MTIPIT subscale average (M = 3.72) was tied for the highest post-

survey subscale average with Career Motivation. Sisman and Kucuk (2019) found that

the idea that motivated their preservice teacher participants the most while they learned

programming was that they could learn to teach their future students programming

www.manaraa.com

195

through educational robotics. Therefore, this study’s findings were consistent with those

of Sisman and Kucuk (2019) because the MTIPIT subscale was tied for the highest post-

survey motivation level of all the subscales. Interview data presented in Theme 5

provided explanations for the high MTIPIT levels and why MTIPIT increased.

MTIPIT increased most dramatically on statements #21 “I enjoy teaching

programming to others” and #22 “I can teach programming in my future courses” (Gain =

1.39). The high agreement with these statements could be attributed to participants’

experiences with programming the robots. As outlined in Theme 5, most interviewees (n

= 5) demonstrated an improved intention to integrate programming into teaching, and

two-thirds of the interviewees (n = 4) had an idea for how they would integrate

programming into their instruction. These quantitative and qualitative findings combined

indicated gains in participants’ MTIPIT. Parallel results have been attained in the

literature. For example, Jaipal-Jamani and Angeli (2017) reported that of their preservice

teacher participants (N = 21), over 85% were motivated to integrate block-based

programming and educational robotics into their elementary science classes as a result of

a science methods course intervention. Similarly, results from research by Kaya et al.

(2015) showed that out of their preservice teacher participants (N = 11), 100% were

motivated to integrate block-based programming and educational robotics into their

instruction.

While this study’s findings suggested that participants enjoyed the idea of

teaching programming to students and mentioned confidence that they can teach the

topic, quantitative and qualitative data indicated that their MTIPIT is tempered by the

uncertainty of how they will integrate programming into their curricula. The statement

www.manaraa.com

196

with the lowest increase between pre and post was a tie among statement #18 “I plan to

incorporate programming into my teaching” and statement #2 “Teaching programming

would benefit my students” (Gain = .94). These results are counterintuitive, given the

large increases in the other statements. Low increases in these statements might be

attributed to participants feeling that they need more instruction in programming and

participants being unsure of programming’s fit with their future subject area. Simon

explained that he was planning on teaching English and social studies and was hesitant

because he was unsure of the exact curriculum fit for programming. Katy noted her

increased perception of the potential of programming in the classroom but felt as though

she still needed to learn more about integrating it. Similar perspectives might explain why

participants had lower increases in their motivation to incorporate programming into their

teaching. These combined quantitative and qualitative findings support Bower et al.’s

(2017) findings that according to teachers’ post-workshop survey responses, they

characterized themselves as still somewhat hesitant to integrate computer science

concepts into their instruction due to perceptions that they did not yet have an adequate

level of knowledge, experience, and integration strategies. It should be noted that even

though preservice teachers may have positive attitudes toward programming, this does

not mean they will implement it in their future teaching. Participants’ perceptions of their

future teaching context may impact these results. However, these results do indicate, as

Cullen and Greene (2011) explained, that participants “are ready to consider new

paradigms of classroom technology integration” (p. 43).

This study offers insights into the extent to which participants can be motivated to

integrate programming into their future instruction. Nearly all participants interviewed

www.manaraa.com

197

explained that they wanted to integrate programming into their future teaching. Theme 5

showed that preservice teachers are open to having their perspectives changed from not

valuing programming in the classroom to valuing programming in the classroom. For

example, Paula explained, “when you first proposed the idea that we would be using

programming and stuff in this class I didn't really think that it would be useful at all.”

However, this perspective changed because “going through it I [Paula] realized like it is

very useful so it's kind of done a complete 180.” As described by Paula, participants’

increased valuation of programming in education, combined with their experiences with

educational robotics, improved their intention to integrate programming into their future

instruction. Many of the interviewees (n = 4) had already devised specific integration

strategies. Therefore, preservice teachers’ MTIPIT can be improved through educational

robotics from a level of disinterest to where they are motivated and have devised

strategies to integrate programming into future instruction.

Quantitative findings showed statistically significant increases in participants’

MTIPIT, and qualitative data affirmed and explained these findings. Existing literature

paired with this study’s findings indicated that preservice teachers’ MTIPIT could be

increased through educational robotics. This study adds to the literature by explaining the

extent to which MTIPIT can be increased in preservice teachers.

Implications

Through action research I was able to gather data through mixed methods. This

study has informed my teaching of programming by using the action research to deeply

analyze the instructional methods and the design of the curriculum. I was able to review

what aspects of the instruction worked with respect to improving the participants’

www.manaraa.com

198

comprehension of programming concepts and motivation related to programming. The

findings of this study are significant for future design and teaching practices to improve

preservice teachers’ comprehension of programming concepts and motivation toward

programming. First, the findings of this study suggest that preservice teachers’

comprehension of programming concepts and motivation related to programming can be

improved through educational robotics. Second, this study has informed my classroom

instruction, including updates to the current curriculum. Third, the findings of this study

can be used to offer suggestions for other preservice teacher educators integrating

programming concepts into their instruction. The next three sections will describe (1)

personal implications, (2) design implications, and (3) recommendations for preservice

teacher educators.

Personal Implications

 Through the process of this study, I have learned many personal lessons that will

help me both as a scholar and an educator in my future practice. While the gains I have

made as a scholar and educator are numerous, I will focus on two in this space. These

two personal implications include (1) lasting scholarly experiences and (2) unexpected

findings.

 Lasting scholarly experiences. My work on this dissertation has left me with

lasting experiences and knowledge. This dissertation has improved my depth of skill and

understanding of quantitative data analysis. Through the guidance of my dissertation

chair and personal research, I now feel confident in my abilities to both analyze and

interpret quantitative data. Before this dissertation, my comfort zone for interpreting

quantitative data was in descriptive statistics. I now understand the differences between

www.manaraa.com

199

parametric and nonparametric results, as well as how these types of quantitative data are

analyzed, presented, and interpreted. This improved depth of understanding has personal

implications for my future research. With this new understanding, I look forward to

adding analytical depth to my future quantitative data analyses.

This dissertation has taken me outside of my scholarly comfort zone with

qualitative data analysis. As a teacher, I understood the concept of alignment relative to

instruction. Lessons needed to be aligned to state standards and course objectives.

Throughout the instrument creation process, I was often frustrated with the countless

revisions to the wording of my instruments because each phrase in the instruments

needed to be aligned to previous literature and fine-tuned to measure exactly what it was

meant to with no overlap between related concepts. Similarly, through the qualitative

coding process, I was often frustrated with how precise each code needed to be. I simply

had not viewed the world through such a precise and scholarly lens before. I have come

to appreciate making instruments and codes as accurate as possible. With my increased

awareness of alignment, I now critically examine studies through a scholarly lens. This

increased awareness has personal implications for my future research. I look forward to

using what I have learned through this dissertation process to incorporate high levels of

alignment within my future research. Through my dissertation chair, I feel my

capabilities in qualitative analysis have improved. Previously, my qualitative data

analysis focus was on “quantitizing the qualitative,” as Saldaña (2016, p. 25) described.

My frame of reference for qualitative research was more defined by categories than by

themes. I focused on what each participant said in regard to each question and focused on

creating categories specific to each question instead of looking for commonalities outside

www.manaraa.com

200

of that immediate prompt. I have gained valuable experience with a qualitative coding

tool. The coding tool used in this study, Delve, was an efficient way to assign open codes

and look at the bigger picture. Delve helped to organize the open codes while keeping

them tethered to their excerpts from the field notes and interview transcripts. This aspect

of Delve proved helpful for reviewing excerpts while I moved through the qualitative

coding steps. Through the qualitative coding process outlined in this dissertation, I have a

deeper view of qualitative analysis. Now, I have the ability to take a deeper view of

qualitative data and a broader view of qualitative codes in order to elicit comprehensive

themes. I can connect different ideas through themes which span multiple categories.

This deeper view of qualitative data analysis has personal implications for my future

research. I look forward to using what I have learned to take a deeper look at the big

picture within my future research.

 Unexpected finding. Novelty effect refers to artificially positive results that are

linked to the newness of a treatment and the curiosity of the participants (Hanus & Fox,

2015). The end of the novelty effect can be detected when a steep decline in engagement

has occurred (Hamari et al., 2014). My personal observations of participants’ behavioral

engagement indicated that several participants had outwardly lost interest in the

programming instruction. By the final week of the study, five participants seemed

disengaged in programming and robotics. This indicated that the novelty of the

intervention had worn off. The motivation survey and individual interview data were

surprising because they demonstrated that while outwardly participants were ready to

move on to new topics in the class, they had almost unanimously grown to value

programming as a competency and were eager to integrate programming into their

www.manaraa.com

201

instruction. While I had expected a slight increase in motivation related to programming

because of the educational robotics factor, the results were higher and deviated far less

than I expected. My observations as the instructor indicated that the novelty effect had

worn off, so I expected lower results, but the motivation data indicated that the

instruction made a genuine and lasting impact on participants’ value and perception of

programming. This unexpected finding reinforces the importance of using mixed

methods to overcome the biases of one type of data alone (Creswell & Plano Clark, 2018;

Mertens, 2009).

Curriculum Design Implications

This research evaluated what effects educational robotics have on preservice

teachers’ comprehension of programming concepts as well as how and to what extent

educational robotics influence preservice teachers' motivation related to programming.

Results indicated that participants experienced increases in all programming concepts and

motivation indicators evaluated. Select data, classified under the pattern codes of Difficult

and Updates to Instruction, can be used to inform areas of emphasis and updates to the

curriculum design (Mertler, 2017). Considering these data, areas of emphasis and updates

include (1) duration and scope, (2) design of units, and (3) focus on wider curricular

connections.

Duration and scope. The data from this study can help inform updates to the

scope of the curriculum. While the curriculum’s designed scope of instruction was

largely effective, it was broad. Instruction could be updated to include more than the 10

hours of instructional time used in this study. While results indicated that 10 hours of

instructional time, activities, and challenges are enough to significantly increase

www.manaraa.com

202

preservice teachers’ comprehension of programming concepts, more instructional time

has the potential to increase students’ depth of comprehension of programming concepts

even more. Other studies have employed a greater number of contact hours ranging from

12 (Kim et al., 2018; Sullivan & Moriarty, 2009) to 52 hours (Kucuk & Sisman, 2018).

While 12 contact hours are possible in the context of the class in which this curriculum

was taught, 52 hours are not. Therefore, 12 contact hours will be implemented in the

updated curriculum. Data from the interview transcripts noted that participants wanted

either more time to be dedicated to the more difficult concepts in the curriculum, or a

longer overall instructional experience. For example, Simon summarized, “I would make

it longer…maybe six weeks” as opposed to the four weeks of instructional time in the

intervention, “that way, you can go slow.” Katy noted, “maybe emphasize more like on

the last part of the programming, like maybe have like an extra lesson or two about the

looping.” These suggestions could be incorporated in a few different ways. For example,

when covering control structures, multiple class periods can provide more depth to the

instruction on loops and switches. Participants’ scores and interview responses noted that

they had difficulty with control structures while previous research has indicated that

students are likely to make errors in control structures when writing programs

(Ahmadzadeh et al., 2007; Chiu & Huang, 2015; Fitzgerald et al., 2008; Kim et al.,

2018). This update will allow for more time for practical experiences.

In addition, the concept of variables gave students difficulty. The concept of

variables is noted in the literature to be difficult to comprehend by novices (Grover &

Basu, 2017; Meerbaum-Salant et al., 2013). Variables are not concepts directly covered

in South Carolina’s K-8 computer science standards. The concept of variables was

www.manaraa.com

203

included to present a natural integration link for those who are preparing to teach middle

school math and to provide participants with more depth of knowledge of programming.

However, the historic student makeup in the course in which this instruction occurs is

heavily skewed to elementary level preservice teachers. Therefore, this unit of instruction

can be removed to limit the scope to more pertinent and applicable topics for all students.

An update to the curriculum can reign in the scope to focus on basic and advanced

procedures, as well as the control structures of switches and loops. The instructional time

dedicated to the Variable unit can be used to provide further depth and meaningful

learning experiences for the other units. These topics will provide students with a

comprehensive programming background while not overwhelming them with the large

scope of programming concepts outside of what they would likely be required to

implement.

Design of units. The findings of this study can help inform updates to the design

of educational robotics curricula. The design of this study included the units of Basic

Procedures, Advanced Procedures, Control Structures, and Variables. It can be inferred

that the design of these units largely contributed toward participants experiencing

increased comprehension of programming concepts, as well as increased motivation

related to programming, as demonstrated in the quantitative data, and verified by the

qualitative data. However, these data also offered areas for improvement in the design of

the curricula in the areas of comprehension and motivation. Areas of emphasis, as well as

updates for the design of educational robotics curricula based on this study’s quantitative

and qualitative data, will be presented by the instructional unit below.

www.manaraa.com

204

Basic procedures. Participants’ scores on the Basic Procedures unit of the

Programming Comprehension Assessment indicated substantial increases in the

comprehension of basic syntactic and semantic programming concepts taught as part of

the Basic Procedures unit. Participants’ interview responses indicated that the concepts in

the Basic Procedures unit were valuable and helped them understand more difficult

programming concepts later in the curriculum. Therefore, an emphasis on meaningful

lectures that explain the programming language and basic programming concepts is

important for subsequent iterations of this instruction. Based on the findings of this study,

the activities and challenges outlined in Appendix A were indicated to help participants

learn basic programming concepts while being motivational. Therefore, these activities

and challenges will remain unchanged. As found in this study, participants struggled with

debugging in the Basic Procedures unit. These findings of preservice teachers’ struggles

with debugging are found in the literature as well (Kim et al., 2018). Therefore,

debugging exercises should be prioritized within the instruction relative to syntactic and

semantic concepts. The curriculum primarily taught debugging through examples in

lectures. However, it did not include a practical application of debugging wherein

participants needed to debug a program to perform a specific task. Based on participants’

data, more practical debugging experiences will be incorporated into future educational

robotics curricula. Carefully designed debugging activities and challenges to improve

students’ comprehension of this topic will be added. Updates to the curriculum will

include an added emphasis on the foundational programming concepts as well as

additional practical applications of debugging.

www.manaraa.com

205

Advanced procedures. Participants had the highest increases as well as average

posttest scores on the Advanced Procedures unit. Therefore, the curriculum design

presented in Appendix A is well designed and necessitate few updates. In particular, the

activities and challenges employed in this unit were characterized by participants in the

interviews to be helpful for exercising their problem-solving skills as well as substantially

motivational. While programming includes inherent math concepts (Barr & Stephenson,

2011; Garcia, Havey, & Barnes, 2015) that were taught as a part of this unit’s design,

participants struggled when applying math theorems within the problem-solving process

in the Programming Comprehension Assessment. Therefore, the updated curriculum will

include more direct practice related to math in programming problem-solving. This

update will provide an increased depth of understanding to the unit already noted by

participants to be both informative and motivational.

Control structures. Participants exhibited moderate increases within the Control

Structures unit. Qualitative data revealed that participants enjoyed using the color sensor

in combination with switches to write programs that announced the color that the color

sensor was looking at. Therefore, future iterations of this instruction will emphasize the

use of the color sensor in combination with switches. Participants excelled at modifying a

loop within an algorithm to execute a more efficient program, but they struggled with

tracing a program that utilized multiple loops. Similar results have been found by other

researchers (Ahmadzadeh et al., 2007; Chiu & Huang, 2015; Fitzgerald et al., 2008; Kim

et al., 2018), noting an area for emphasis. While an increased emphasis on control

structures concepts and increased instructional time could improve this curriculum as

outlined in the section addressing the scope above, there are two more additions that can

www.manaraa.com

206

be made for future teaching of this curriculum. First, an application activity will be added

to this unit in which students follow the flow of a program that utilizes multiple loops.

Second, the concept of looping can be taught mathematically first, and then demonstrated

through educational robotics. Through this progression, constructivist teaching (Harel &

Papert, 1991; Piaget, 1967) with educational robotics tools can be used to help students to

take abstract math ideas and make them concrete through educational experiences. These

two strategies will be added to the curriculum detailed in Appendix A for future

instruction when teaching control structure concepts.

Variables. Participants exhibited moderate increases within the Variables unit.

However, qualitative data indicated that participants felt the concepts in the unit were

difficult to understand. Quantitative data showed that while participants were comfortable

with basic identification and application of variables, they did not exhibit a deep

comprehension of using variables in combination with the other programming concepts

covered in the curriculum. Similar findings of novices struggling with variables are noted

in the literature (Grover & Basu, 2017; Meerbaum-Salant et al., 2013; Wang et al., 2009).

Therefore, in addition to the option of cutting the Variables unit in the section addressing

the scope of the curriculum above, an alternative path could include more learning

activities focused on applying variables in complex problem-solving scenarios that

overlap with concepts learned in previous units.

Focus on wider curricular connections. Interview data revealed an imbalance

of integration ideas between math and all other subjects. Preservice teachers will likely be

expected to integrate programming into each of the core subject areas (Google Inc. &

Gallup Inc., 2016). However, interviewees presented as many integration ideas for the

www.manaraa.com

207

subjects of English, social studies, and science combined (4) as they did math (4). The

interviewees who were planning to teach English and social studies were unsure,

describing how they would integrate programming into their future instruction. “So yeah,

honestly in history I'm not sure like I said if I was teaching math, it would make perfect

sense. In history, I don't know to be honest,” replied Jennifer. Randy explained, “I have

to educate myself more about some cool ideas that you can put in history and also in

English, too. I just have to dig into it more and figure out what would be the best for my

students.” Mariah explained that she would use programming for digital storytelling

without using educational robotics. She stated that she envisioned herself “incorporating

it into a classroom with like story ideas or even the online like storyboard kind of things,”

in reference to a video that participants watched on digital storytelling. Because

participants’ integration ideas were largely skewed toward math integration,

improvements can be made to the curriculum. The curriculum can be updated to

showcase more integration videos and ideas for English, social studies, and science. For

example, a study by Burke (2012) used programming as a new literacy with which

middle school students could tell stories. Specific lesson plans for these subjects can also

be presented. These updates can foster preservice teachers’ integration ideas for their

future classrooms.

Implications for Preservice Teacher Educators

 The general implication of this study is that educational robotics can be used to

positively impact preservice teachers’ comprehension and motivation related to

programming. Therefore, it is not only recommended that preservice teacher educators

teaching programming use educational robotics to teach programming, but that they use

www.manaraa.com

208

the curriculum outlined in Appendix A in addition to the updates outlined in the

Curriculum Design Implications section.

If preservice teachers elect to build their own educational robotics curriculum for

teaching programming, select findings in this study can be used to inform their

instruction and curriculum design while teaching programming concepts in the

classroom. Suggestions for preservice teacher educators aiming to increase their students’

comprehension of programming concepts and motivation related to programming will be

presented in the sections below: (1) carefully sequence concepts, (2) use authentic

problem-solving activities and challenges, and (3) offer collaborative problem-solving

opportunities.

Carefully sequence concepts. The findings of this study can help inform

subsequent preservice teacher educators’ educational robotics curricula in terms of the

sequence. This study’s purposeful sequencing was largely effective. There were some

aspects of the unit sequencing in this study that preservice teacher educators could follow

in their original curricula. When designing programming curricula, preservice teacher

educators should gradually increase the difficulty of programming concepts within their

units but do the reverse when teaching each programming concept within the unit. To

explain, curricula should begin with the basic concepts that participants in this study

pointed to as being greatly valuable. The programming concepts at the start of curricula

should focus on foundational syntactic and semantic concepts that can be utilized and

built upon in later units (Bucks, 2010; Mayer, 1979; Soloway & Ehrlich, 1984).

Preservice teachers should then be afforded time in curricula to apply these programming

concepts through activities and challenges which test their problem-solving skills.

www.manaraa.com

209

Strategic programming concepts should next be introduced to students (McGill & Volet,

1997). Participants in this study noted that the different strategic programming concepts

in the Advanced Procedures unit also helped their understanding in later units. From this

point, curricula can gradually present more difficult programming concepts that provide

more depth for students’ comprehension. The sequencing of these more difficult

programming concepts would depend on the topics being taught, as well as the state

standards and instructional goals of the course.

Use authentic problem-solving activities and challenges. Authentic problems

have been proposed as a method with which to increase students’ motivation (Parsons &

Ward, 2011; Willems & Gonzalez-DeHass, 2012). The problem-solving skills students

develop when solving authentic problems are aligned with the skills they will need in the

professional world (Belland, 2013; Jonassen, 2011). Interview data from this study

revealed that participants were motivated by the authentic problems posed to them in the

activities and challenges. Preservice teacher educators designing their programming

curricula can utilize educational robotics and authentic problems in much the same way

as this study. Unique mazes can be used to scale the difficulty of the problems that

students are given at each stage of the instruction, either up or down. By using authentic

problems, like mazes, preservice teacher educators can increase the motivation of their

students.

Offer collaborative problem-solving opportunities. This study used the

learning support of partners. In the study, participants worked in pairs through different

programming activities and challenges in order to provide immediate scaffolds for

learning and frustration control. Participants’ interview responses indicated that they

www.manaraa.com

210

often relied on their partner to help them through the programming process. Other

researchers (Eguchi, 2007; Jaipal-Jamani & Angeli, 2017) noted similar positive results

from paired groupings. Preservice teacher educators teaching programming through

educational robotics can implement this same strategy. It is not, however, suggested to

increase the groupings from pairs to any larger number. For example, research by Kucuk

and Sisman (2018) and Sisman and Kucuk (2019) reported that preservice teachers

working in groups of three or four experienced issues with communication and roles.

While the partner dynamic was indicated to aid participants in their

comprehension, it did make ensuring equal programming time with the robot difficult.

Preservice teacher educators dividing their students into groupings beyond pairs may

further water down the hands-on programming experience time for students, negatively

affecting comprehension.

Participants’ immediate partner was the support that interview data indicated they

most often turned to; however, this was not the only learning support that participants

explained helped them. A collaborative classroom environment also was stated to have

aided participants as they worked. This learning environment occurred naturally and was

not by design within the curriculum. Collaborative classroom environments where

separate groups collaborated have been noted to help students learn to program (Casler-

Failing, 2017; Eguchi, 2013). If a participant had a question, and their partner could not

help them, other groups in the classroom were noted to help the learner through the

programming concept. Preservice teacher educators could build upon the phenomenon by

encouraging group to group collaboration through social constructivist theory (Vygotsky,

1980), which emphasizes the collaborations between students. For example, preservice

www.manaraa.com

211

teacher educators may create special challenges for each instructional unit where multiple

groups must work together to program their robots to interact to achieve a specific task.

Then, groups working in collaboration could share ideas and help each other, further

promoting group to group collaboration.

Implications for Future Research

 The findings of this study offer implications for future research. This study can be

used as the beginning of a progression of studies for researchers to evaluate the impact of

educational robotics as a tool for teaching programming. These potential research topics

can be divided into four categories (1) updated curriculum, (2) factor analysis, (3)

programming unplugged, and (4) experimental studies.

Updated curriculum. In alignment with action research (Creswell, 2014;

Mertler, 2017), this study’s curriculum could be improved and tested. In the sections

above, proposed updates to the curriculum in this study, as well as recommendations for

preservice teacher educators, were detailed. In a follow-up to this study, future research

could enact these updates and recommendations to evaluate the updated curriculum’s

impact on preservice teachers’ comprehension and motivation related to programming.

For example, cycle two of this action research could focus more on basic and advanced

procedures in addition to control structures over 12 contact hours and analyze the result.

From those results, further follow-up studies could be crafted in a cyclical process.

Factor analysis. The Programming Motivation Survey instrument utilized in this

study indicated the potential for further refinement and validation. The Programming

Motivation Survey was tested twice for reliability (N = 18), once on the pre-survey, and

once on the post-survey. Very good reliability (DeVellis, 2003) was indicated on the

www.manaraa.com

212

Cronbach’s alpha for both this instrument’s pre-survey (α = .96) and post-survey (α =

.94). In addition, each of the instrument’ subscales indicated very good reliability on both

their pre-survey and post-survey Cronbach’s alpha testing. The SMQ-II (Glynn et al.,

2011), which I adapted and customized to create the Programming Motivation survey,

was studied, revised, and validated with a factor analysis (Marsh, Balla, & McDonald,

1988) over the course of two studies (Glynn et al., 2009, 2011). Future research could

validate the Programming Motivation Survey in much the same way by utilizing

hundreds of participants through a multi-location sample of preservice teachers. This

future research would gauge the construct validity of the Programming Motivation

Survey, adjust its statements, and present a valid and reliable instrument for evaluating

preservice teachers’ motivation related to programming.

Schema and long-term memory. An investigation into the lasting effects of this

study’s intervention is another intriguing research topic. The findings of this study

indicated that educational robotics could be used to increase preservice teachers’

comprehension of programming concepts. Researchers (Atkinson & Shiffrin, 1968;

Baddeley, 1992; Kalyuga, 2010) have explained theories of how learners store

knowledge through schema and long-term memory. Further research could check to what

extent the knowledge and skills developed by participants in this study return when called

upon in long-term memory after an extended period. In this way, the interaction of the

senses while learning to program (i.e., tangible educational robotics) could be evaluated

through the lens of information processing models, such as the IPM (Newell & Simon,

1972) and Multi Store Model of Memory (Atkinson & Shiffrin, 1968). Such research

could provide deeper insights into the processes through which programming is learned.

www.manaraa.com

213

Programming unplugged. The results of this study may have important

implications for unplugged programming activities. Unplugged activities, described by

Bower et al. (2017), are programming activities that use “paper or other tactile

modelling” such as blocks “to demonstrate the area of computational thinking” (p. 57).

Some institutions may not have the resources necessary to teach programming through

educational robotics. Unplugged activities are a low-cost way to teach programming.

Furthermore, unplugged activities have been shown to increase the understanding of

programming concepts among elementary students (Curzon et al., 2009; Lambert &

Guiffre, 2009) middle school students (Meerbaum-Salant et al., 2013), high school

students (Weintrop, 2016), and in-service teachers (Bower et al., 2017). Therefore,

merging the insights about comprehension and motivation uncovered in this study – like

the use of authentic problems and factors that increased career motivation – with

unplugged activities represents a new area of investigation with a wide range of

implications for education given the lack of required equipment.

Experimental studies. This study sets the stage for experimental research. Future

research could evaluate educational robotics as a tool for teaching programming against

non-tangible alternatives. Two future research ideas are outlined below.

Visual programming environments versus educational robotics. Future research

could add to the literature available on the differences between learning programming

through tangible and non-tangible modalities. For example, Weintrop (2016) and

Weintrop and Wilensky (2017) examined the modality through which students learn

programming between text-based, block-based, and hybrid text and block-based

programming environments. Future research could continue this line of inquiry and

www.manaraa.com

214

examine the differences between students’ learning experiences in visual programming

environments, like Scratch, and students’ learning experiences programming educational

robotics. This research could investigate differences between control (visual

programming environment) and experimental (educational robotics) groups’

comprehension of programming concepts and motivation related to programming. This

potential future research presents a logical next step in evaluating modalities of learning

programming.

Educational robotics versus educational robotics simulators. Educational

robotics simulators such as CoderZ, Robot Virtual Worlds, or Virtual Robotics Toolkit

offer lower-cost alternatives to schools for teaching programming through robotics

(Major et al., 2014; McNally et al., 2006). Future research could add to the inquiry into

the differences between different modalities of programming started by Weintrop (2016)

and Weintrop and Wilensky (2017). Future research could investigate the differences

between students’ learning experiences in educational robotics simulators versus using

educational robotics in the real world. This research could investigate differences

between control (educational robotics simulator) and experimental (educational robotics)

groups’ comprehension of programming concepts and motivation related to

programming. This potential future research also presents a logical next step in

evaluating modalities of learning programming.

Limitations

While this study suggests insights into the impact of educational robotics on

preservice teachers’ comprehension of programming concepts and motivation related to

programming, there are several limitations of this study. These limitations present areas

www.manaraa.com

215

for further research. The following limitations will be outlined as they align to (1)

methodology, (2) context, (3) participants, and (4) the researcher.

Methodology

One limitation of this study is its action research roots. Action research is a

systematic process of inquiry that uses a cycle of planning, action, and reflection

(Mertler, 2017). Because action research employs a highly contextualized problem, the

solutions to that problem are highly contextualized, too. Therefore, the specificity of

action research’s results to a particular “wicked problem” (Kochhar-Bryant, 2017, p. 12)

are limiting. Further, as Mertler (2017) explained, “action research is not conclusive; the

results of action research are neither right nor wrong but rather tentative solutions that are

based on observations and data collection” (p. 18). These inherent characteristics of

action research limit this study’s implications.

In addition, the lack of control and experimental groups in the design of this study

does limit its generalizability. While action research and experimental design are not

mutually exclusive (Mertler, 2017), the equitable nature of action research paired with the

ethical notion that all participants must receive the same benefits (Creswell, 2014) does

limit the research design in this context. This study did not test any predetermined

hypotheses, nor did I exert the detailed control necessary to definitively generalize results

based on the different variables. Further inquiry into this topic should utilize true

experimental design to definitively analyze the relationship between the variables.

The muffled responses of one of the interviewees is also a limitation of this study.

In two different sections of the interview, Simon provided muffled responses that could

not be interpreted by the Microsoft Dictate live transcribing tool or by me when

www.manaraa.com

216

reviewing the backup audio recording. While Simon’s response in one section was

clarified by me in clear audio, the original wording of the interviewee was lost. The

words and meanings of the interviewee in the second instance could not be interpreted

and were not clarified in the recording.

Context

Equity of hands-on time with the technology in this study’s intervention provides

an additional limitation. In the intervention, participants worked in pairs. While this study

utilized a constructivist framework that valued learners working collaboratively, the

sharing of the laptops and the robots between partners could not be totally ensured. While

participants were encouraged to share the programming responsibilities and were

prompted with multiple reminders to switch program writing duties from one partner to

another during the class periods, the onus was on the participants to manage this.

Therefore, participants who had less self-efficacy or self-determination could relinquish

responsibility to their partner and lose valuable programming experience through difficult

problems. Future studies should employ constraints that ensure each partner is given

equal programming time or utilize an individual participant design.

The novelty effect is a limitation for a short-term intervention, such as the one in

this study (Hamari et al., 2014; Hanus & Fox, 2015; Tsay, Kofinas, Trivedi, & Yang,

2018). The novelty effect is especially relevant when new technologies are introduced to

participants due to participants’ propensity to engage more deeply with and view the

technologies more favorably when they are new to them (Hamari et al., 2014; Hanus &

Fox, 2015; Tsay et al., 2018). Future studies should implement longer-term interventions

www.manaraa.com

217

in order to analyze the novelty effect of educational robotics on preservice teachers with

longitudinal data.

Limitations exist to the survey used in this study. This study followed a literature

review and Glynn et al.’s (2011) valid and reliable SMQ-II survey. However, there were

not enough participants in the class with which to complete a rigorous factor analysis to

testify the Programming Motivation Survey’s empirical validity.

Mixed methods involve qualitative interpretations (Creswell, 2014; Mertler,

2017). The act of interpretation by the researcher is an inherently subjective process

(Aron, 1992). My interpretations of the data are the result of viewing the data through a

personal lens. This lens is intrinsically linked to my background, experiences, knowledge,

and beliefs. Therefore, it is possible that different researchers with different lived

experiences may come to different conclusions based on their personal lenses when

analyzing the data. While checks on my subjectivities – like member checking,

triangulation, and peer debriefing – did occur throughout the course of this study, such

limitations do still apply.

Participants

Another limitation of this study’s highly specific context is the population.

Mertler (2017) explained that action research is done by educators to better understand

their own teaching practice, focusing “specifically on the unique characteristics of the

population with whom a practice is employed” (p. 4). Due to the action research nature of

this study, the sample was limited in size by the course cap of the class section taught by

me. This population is small in sample size and largely homogenous. Of the final

participants, 15 of the 18 were female, and half were elementary education majors. It is

www.manaraa.com

218

possible that if this intervention were implemented in a different class with a different

makeup of education majors or a different number of participants that the data would be

different. Therefore, the results of this study cannot accurately be generalized to the

larger population. Further research into the impact of educational robotics on preservice

teachers should include a much larger sample size with a more diverse population of

education majors. Multiple research sites and random sampling may be used in order to

improve both the sample size and diversity of the participants.

Researcher

The design of the instruction in this study was developed by me. Although this

instruction was evaluated by experts, there is still room for improvement. Through this

action research, I aim to make data-driven decisions to augment the current instruction

for the future.

A final limitation involves the reflexivity of the researcher. As I acted as both the

researcher and the instructor in this study, this may have unintentionally influenced its

results. Participants were instructed to answer the survey and interview questions

honestly and not solely in a way they thought their instructor would want. However, there

is no way to know the inner psyche and motivations of participants during those data

collection periods. Furthermore, as I acted as both the instructor and researcher, I may

have missed important interactions and phenomena that occurred in the classroom while I

was teaching or helping other participants. Such limitations can be removed from future

studies by employing independent instructors and researchers.

www.manaraa.com

219

REFERENCES

Abelson, H., & DiSessa. A. (1986). Turtle geometry. Cambridge, MA: The MIT Press.

Adams, A. E., Miller, B. G., Saul, M., & Pegg, J. (2014). Supporting elementary pre-

service teachers to teach STEM through place-based teaching and learning

experiences. Electronic Journal of Science Education, 18(5), 1-22.

Adams, D. B. (2010). Explore-create-present: A project series for CS. Proceedings of the

ASEE North Central Sectional Conference (ASEE’10).

Ahmadzadeh, M., Elliman, D., & Higgins, C. (2007). The impact of improving

debugging skill on programming ability. Innovation in Teaching and Learning in

Information and Computer Sciences, 6(4), 72–87. https ://doi.org/10.11120

/ital.2007.06040 072.

Ajzen, I. (2005). Attitudes, personality, and behavior. New York: Open University Press.

Ala-Mutka, K. (2004). Problems in learning and teaching programming. Codewitz Needs

Analysis, 1–13. Retrieved from http://www.cs.tut.fi/~edge/literature_study.pdf

Alimisis, D. (2013). Educational robotics: Open questions and new challenges. Themes in

Science & Technology Education, 6(1), 63–71.

https://doi.org/10.1109/FIE.2014.7044055

Alimisis, D., Moro, M., Arlegui, J., Pina, A., Stassini, F., & Papanikolaou, K. (2007).

Robotics & constructivism in education: The TERECoP project. EuroLogo, 1–11.

Retrieved from http://users.sch.gr/adamopou/docs/syn_eurologo2007_alimisis.pdf

www.manaraa.com

220

Alkaria, A., & Alhassan, R. (2017). The effect of in-service training of computer science

teachers on Scratch programming language skills using an electronic learning

platform on programming skills and the attitudes towards teaching programming.

Journal of Education and Training Studies, 5(11).

https://doi.org/10.11114/jets.v5i11.2608

Almalki, S. (2016). Integrating quantitative and qualitative data in mixed methods

research—challenges and benefits. Journal of Education and Learning, 5(3), 288.

https://doi.org/10.5539/jel.v5n3p288

Altin, H., & Pedaste, M. (2013). Learning approaches to applying robotics in science

education. Journal of Baltic Science Education, 12(3), 365-377.

Amabile, T. M., Hill, K. G., Hennessey, B. A., & Tighe, E. M. (1994). The work

preference inventory: Assessing intrinsic and extrinsic motivational orientations.

Journal of Personality and Social Psychology, 66(5).

Anderson, L. W., Krathwohl, D. R., & Bloom, B. S. (2001). A taxonomy for learning,

teaching, and assessing: A revision of Bloom’s Taxonomy of Educational

Objectives. New York: Longman.

Anderson, E. F., & McLoughlin, L. (2007). Critters in the classroom: A 3D computer-

game-like tool for teaching programming to computer animation students.

International Conference on Computer Graphics and Interactive Techniques:

ACM SIGGRAPH 2007 Educators Program, 7.

Antle, A. 2007. Designing tangibles for children: What designers need to know. in CHI

EA '07 extended abstracts on human factors in computing systems. San Jose, CA,

USA: ACM.

www.manaraa.com

221

Apiola, M., Lattu, M., & Pasanen, T. A. (2010). Creativity and intrinsic motivation in

computer science education. In C. Laxer (Ed.), Proceedings of the fifteenth

annual conference on Innovation and technology in computer science education

(pp. 199–203). https://doi.org/10.1145/1822090.1822147

Appleton, K. (2003). How do beginning primary school teachers cope with science?

Toward an understanding of science teaching practice. Research Science

Education, 33(1), 1–25.

Arlegui, J., Pina, A., & Moro, M. (2013). A PBL approach using virtual and real robots

(with BYOB and LEGO NXT) to teaching learning key competences and

standard curricula in primary level. Proceedings of the First International

Conference on Technological Ecosystem for Enhancing Multiculturality - TEEM

’13, 323–328. http://doi.org/10.1145/2536536.2536585

Aron, L. (1992). Interpretation as expression of the analyst’s subjectivity. Psychoanalytic

Dialogues, 2(4), 475-507. https://doi.org/10.1080/10481889209538947

Arwood, L. (2004). Teaching cell biology to nonscience majors through forensics, or how

to design a killer course. Cell Biology Education, 3, 131–138.

Atkinson, R. C. & Shiffrin, R. M. (1968). Human memory. A proposed system and its

control processes. In K. Spence & J. Spence (Eds.), The psychology of learning

and motivation (Vol 2). New York, NY: Academic Press.

Babaei, M., & Abednia, A. (2016). Reflective teaching and self-efficacy beliefs:

Exploring relationships in the context of teaching EFL in Iran. Australian Journal

of Teacher Education, 41(9), 1–27. https://doi.org/10.14221/ajte.2016v41n9.1

Baddeley, A. (1992). Working memory. Science, 255, 556–559.

www.manaraa.com

222

Bakke, C. (2013). Perceptions of professional and educational skills learning

opportunities made available through k-12 robotics programming (Doctoral

dissertation). Retrieved from ProQuest Dissertation & Theses. (AAT 3556716)

Ball, S. (1977). Motivation in education. Cambridge, MA: Academic Press.

Bandura, A. (1997). Self-efficacy. Harvard Mental Health Letter, 13(9), 4–5.

Barker, B. S., Nugent, G., & Grandgenett, N. (2014). Examining fidelity of program

implementation in a STEM-oriented out-of-school setting. International Journal

of Technology & Design Education, 24(1), 39-52. http://doi.org/10.1007/s10798-

013-9245-9.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is

involved and what is the role of the computer science education community?

ACM Inroads 2(1), 48-54.

Bayman, P. & Mayer, R. E. (1983). A diagnosis of beginning programmers'

misconceptions of BASIC programming statements. Communications of the ACM

26(9), 677-679.

Bazeley, P. (2013). Qualitative data analysis. Thousand Oaks: Sage

Belland, B. R. (2013). Mindtools for argumentation, and their role in promoting ill-

structured problem solving. In J. M. Spector, B. B. Lockee, S. E. Smaldino, & M.

Herring (Eds.), Learning, problem solving, and mind tools: Essays in honor of

David H. Jonassen (pp. 229–246). New York, NY: Routledge.

Belland, B. R., Kim, C. M., & Hannafin, M. J. (2013). A framework for designing

scaffolds that improve motivation and cognition. Educational Psychologist, 48(4),

243–270. https://doi.org/10.1080/00461520.2013.838920

www.manaraa.com

223

Bender, E., Schaper, N., Caspersen, M. E., Margaritis, M., & Hubwieser, P. (2016).

Identifying and formulating teachers’ beliefs and motivational orientations for

computer science teacher education. Studies in Higher Education, 41(11), 1958–

1973. https://doi.org/10.1080/03075079.2015.1004233

Bers, M. U. (2008). Blocks to robots: Learning with technology in the early childhood

classroom. New York, NY: Teachers College Press.

Bers, M. U. (2010). The TangibleK robotics program: Applied computational thinking

for young children. Early Childhood Research and Practice, 12(2). Retrieved

from http://ecrp.uiuc.edu/v12n2/bers.html

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational

thinking and tinkering: Exploration of an early childhood robotics curriculum.

Computers and Education, 72, 145–157.

https://doi.org/10.1016/j.compedu.2013.10.020

Bers, M. U., Ponte, I., Juelich, C., Viera, A., & Schenker, J. (2002). Teachers as

designers: Integrating robotics in early childhood education. Information

Technology in Childhood Education Annual, 14, 123-145.

Bers, M. U., & Portsmore, M. (2005). Teaching partnerships: Early childhood and

engineering students teaching math and science through robotics. Journal of

Science Education and Technology, 14(1), 59–73. https://doi.org/10.1007/s10956-

005-2734-1

Black, A. E., & Deci, E. L. (2000). The effects of instructors' autonomy support and

students' autonomous motivation on learning organic chemistry: a self-

determination theory perspective. Science Education, 84(6), 740-756.

www.manaraa.com

224

Bland, J. M., & Altman, D. G. (1995). Multiple significance tests: The Bonferroni

method. BMJ, 310(170).

Bloom, B., Engelhart, M., Furst, E., Hill, W., & Krathwohl, D. (1956). Taxonomy of

educational objectives: The classification of educational goals. New York: David

McKay.

Bloomberg, L. D., & Volpe, M. (2016). Completing your qualitative dissertation: A road

map from beginning to end (3rd ed.). Thousand Oaks: Sage.

Böhm, C., & Jacopini, G. (1966). Flow diagrams, turing machines and languages with

only two formation rules. Communications of the ACM, 9(5), 366–371.

https://doi.org/10.1145/355592.365646

Bonar, J., & Soloway, E. (1983). Uncovering principles of novice programming.

Proceedings of the 10th ACM SIGACT-SIGPLAN Symposium on Principles of

Programming Languages, Austin, Texas.

Bower, M., Wood, L. N., Lai, J. W., Howe, C., Lister, R., Mason, R., Highfield, K., &

Veal, J. (2017). Improving the computational thinking pedagogical capabilities of

school teachers. Australian Journal of Teacher Education, 42(3).

http://dx.doi.org/10.14221/ajte.2017v42n3.4

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative

Research in Psychology, 3(2), 77-101. Retrieved from

http://dx.doi.org/10.1191/1478088706qp063oa

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the

development of computational thinking. AERA, 727, 135–160.

https://doi.org/10.1007/978-3-319-64051-8_9

www.manaraa.com

225

Brookhart, S. M., & Freeman, D. J. (1992). Characteristics of entering teacher candidates.

Review of Educational Research, 62, 37–60.

http://dx.doi.org/10.3102/00346543062001037

Brosterman, N. (1997). Inventing kindergarten. New York, NY: Harry N. Adams Inc.

Bruciati, A.P. (2004). Robotics technologies for K-8 educators: A semiotic approach for

instructional design. Education Faculty Publications. Paper 56.

http://digitalcommons.sacredheart.edu/ced_fac/56

Bruder, S., & Wedeward, K. (2003). Robotics in the classroom. IEEE Robotics &

Automation Magazine, 10(3), 25–29

Bryan, L. A. (2003). Nestedness of beliefs: Examining a prospective elementary teacher’s

belief system about science teaching and learning. Journal of Research in Science

Teaching, 40(9), 835–868

Bucks, G. W. (2010). A phenomenographic study of the ways of understanding

conditional and repetition structures in computer programming languages.

Retrieved from

http://ezproxy.library.nyu.edu:2148/pqdtft/docview/858607918/abstract/138B68F

802A21839DB5/39?accountid=12768%5Cnhttp://ezproxy.library.nyu.edu:2283/

media/pq/classic/doc/2302029981/fmt/ai/rep/NPDF?hl=scratches,scratch,program

ing,programming&cit:auth=Bucks

Burke, Q. (2012). The markings of a new pencil: Introducing programming-as-writing in

the middle school classroom. Journal of Media Literacy Education, 4(2), 121–

135.

www.manaraa.com

226

Burke, Q. & Kafai, Y. B. (2014). Decade of game making for learning: From tools to

communities. In M.C. Angelides & H. Agius (Eds.), Handbook of digital games

689-709. New York: John Wiley & Sons.

Burke, Q., Schep, M, & Dalton, T. (2016). CS for SC: A landmark report on K-12

computer science in South Carolina. National Science Foundation. 1-19.

Buss, R.R., & Zambo, D. (2014). A practical guide for students and faculty in CPED-

influenced programs working on an action research dissertation in practice.

Retrieved from

http://www.cpedinitiative.org/resource/resmgr/Literature/ARbuss_zambo_cped_p

roduct.pdf

Casler-Failing, S. L. (2017). The effects of integrating Lego robotics into a mathematics

curriculum to promote the development of proportional reasoning (Doctoral

dissertation). Retrieved from ProQuest Dissertation & Theses. (AAT 10204060)

Castledine, A. R., & Chalmers, C. (2011). LEGO robotics: An authentic problem solving

tool? Design and Technology Education, 16, 19–27.

Catlin, D. (2012). Maximising the effectiveness of educational robotics through the use

of assessment for learning methodologies. Proceedings of 3rd International

workshop teaching Robotics, Teaching with Robotics, Integrating Robotics in

School Curriculum. Trento, Italy.

http://www.terecop.eu/TRTWR2012/trtwr2012_submission_01.pdf

Cejka, E., Rogers, C., & Portsmore, M. (2006). Kindergarten robotics: Using robotics to

motivate math, science, and engineering literacy in elementary school.

International Journal of Engineering Education, 22(4), 711–722.

www.manaraa.com

227

Ceruzzi, P. E. (1998). A history of modern computing. Cambridge, MA: MIT Press.

Chambers, J. M., & Carbonaro, M. (2003). Designing, developing, and implementing a

course on LEGO robotics for technology teacher education. Journal of

Technology and Teacher Education, 11(2), 209–242.

Chan, T. S., & Ahern, T. C. (1999). Targeting motivation – adapting flow theory to

instructional design. Journal of Educational Computing Research 21(2), 152–163

Chen, Z., & Yeung, A. S. (2015). Self-efficacy in teaching Chinese as a foreign language

in Australian schools. Australian Journal of Teacher Education, 40(8).

https://doi.org/10.14221/ajte.2015v40n8.2

Cheng, P. L. (2017). Evaluating intention to use remote robotics experimentation in

programming courses (Doctoral dissertation). Retrieved from ProQuest

Dissertation & Theses. (AAT 10273171)

Chiu, C.-F., & Huang, H.-Y. (2015). Guided debugging practices of game based

programming for novice programmers. International Journal of Information and

Education Technology, 5(5), 343–347. https ://doi.org/10.7763/IJIET

.2015.V5.527.

Cliburn, D. (2006). A CS0 course for the liberal arts. Proceedings of the 37th ACM

Technical Symposium on Computer Science Education (SIGCSE’06). 77–81.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Nature (2nd ed.,

Vol. 506). Lawrence Erlbaum Associates. https://doi.org/10.1038/506274a

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159.

http://doi.org/10.1037/0033-2909.112.1.155.

www.manaraa.com

228

Cooper, S., Dann, W., & Pausch, R. (2000). Alice: A 3-D tool for introductory

programming concepts. Journal of Computer Sciences in Colleges 15(5), 107–

116.

Corbin, J., & Strauss, A. (2008). Basics of qualitative research: Techniques and

procedures for developing grounded theory (3rd ed.). Sage Publications, Inc.

https://doi.org/10.4135/9781452230153

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed method

approaches (4th ed.). Thousand Oaks, CA: Sage.

Creswell, J.W. (2017). Qualitative inquiry and research design: Choosing among the five

traditions. Thousand Oaks, CA: Sage Publications.

Creswell, J. W., & Plano Clark, V. L. (2018). Designing and conducting mixed methods

research (3rd ed.). Thousand Oaks, CA: Sage.

Creswell, J. W., & Poth, C. N. (2018). Qualitative inquiry and research design: Choosing

among five approaches (4th ed.). Los Angeles: Sage.

Csikszentmihalyi, M. (1975). Beyond boredom and anxiety. San Francisco, CA: Jossey-

Bass.

Csikszentmihalyi, M. (1990). Flow: the psychology of optimal experience. New York,

NY: Harper & Row.

Csikszentmihalyi, M. (2000). Beyond boredom and anxiety: experiencing flow in work

and play. San Francisco, CA: Jossey-Bass.

Cullen, T. A., & Greene, B. A. (2011). Preservice teachers’ beliefs, attitudes, and

motivation about technology integration. Journal of Educational Computing

Research, 45(1), 29–47. https://doi.org/10.2190/EC.45.1.b

www.manaraa.com

229

Curzon, P., Cutts, Q. I., & Bell, T. (2009). Enthusing and inspiring with reusable

kinaesthetic activities. Proceedings of the 14th Annual ACM SIGCSE Conference

on Innovation and Technology in Computer Science Education, Paris, France, 3-

7 Jul 2009, (pp. 94-98). doi:10.1145/1595496.1562911

Dagdilelis, V., Sartatzemi, M., & Kagani, K. (2005). Teaching (with) robots in secondary

schools: Some new and not-so-new pedagogical problems. Proceedings - 5th

IEEE International Conference on Advanced Learning Technologies, ICALT

2005, 2005(January), 757–761. https://doi.org/10.1109/ICALT.2005.255

Davis E. A., Petish, D., & Smithey, J. (2006). Challenges new science teachers face.

Review of Educational Research 76(4), 607–651

Deci, E. L. (1992). The relation of interest to motivation of behavior: A self-

determination theory perspective. In K.A. Renninger, S. Hidi & A. Krapp (Eds.),

The role of interest in learning and development (pp. 3-25). HillSDale, NJ:

Lawrence Erlbaum Associates.

Deci, E. L., & Ryan R. M. (2000). The ‘what’ and ‘why’ of goal pursuits: Human needs

and the self-determination of behavior. Psychological Inquiry, 11, 227–68.

doi:10.1207/ S15327965PLI1104_01

DeClue, T. H. (2003). Pair programming and pair trading: Effects on learning and

motivation in a cs2 course. Journal of Computing Sciences in Colleges, 18(5), 49-

56.

Denis, B., & Hubert, S. (2001). Collaborative learning in an educational robotics

environment. Computers in Human Behavior, 17, 465–480.

www.manaraa.com

230

DeVellis, R. F. (2003). Scale development: Theory and applications. Thousand Oaks,

CA: Sage.

Devlin, A. S. (2017). The research experience: Planning, conducting, and reporting

research. Thousand Oaks: Sage.

Dewey, J. (1913). Interest and effort in education. In J.A. Boydston (Ed.), The middle

works, 1899-1924: Vol.7 1912-1914 (pp. 153-197), Carbondale, IL: Southern

Illinois University Press.

Dijkstra, E. W. (1976). A discipline of programming. Englewood Cliffs, N.J.: Prentice

Hall.

Dodds, Z., Greenwald, L., Howard, A., Tejada, S., & Weinberg, J. (2006). Components,

curriculum, and community: Robots and robotics in undergraduate AI education.

AI Magazine, 27(1), 11–22.

Donzeau-Gouge, V., Huet, G., Lang, B., & Kahn, G. (1984). Programming environments

based on structured editors: The MENTOR experience. In D. Barstow, H. E.

Shrobe, & E. Sandewall (Eds.), Interactive Programming Environments. McGraw

Hill.

Dörnyei, Z., & Ushioda, E. (2011). Teaching and researching motivation (2nd ed.). New

York, NY: Longman.

Driscoll, M. (2005). Psychology of learning for instruction (3rd ed.). Boston, MA: Allyn

and Bacon.

Dwyer, S.C., & Buckle, J.L. (2009). The space between: On being an insider-outsider in

qualitative research. International Journal of Qualitative Methods, 8(1), 54-63.

www.manaraa.com

231

Eccles, J. S., Simpkins, S. D., & Davis-Kean, P. E. (2006). Math and science motivation:

A longitudinal examination of the links between choices and beliefs.

Developmental Psychology, 42, 70–83.

Egbert, J. (2003). A study of flow theory in the foreign language classroom. Modern

Language Journal 87(4), 499–518.

Eguchi, A. (2007). Educational robotics for undergraduate freshmen. Proceedings of

World Conference on Educational Multimedia, Hypermedia and

Telecommunications 2007, 1792–1797. Retrieved from

http://www.editlib.org/INDEX.CFM?fuseaction=Reader.ViewAbstract&pap

er_id=25614

Eguchi, A. (2012). Educational robotics theories and practice: Tips for how to do it right.

In B. S. Barker, G. Nugent, N. Grandgenett & V. I. I. Adamchuk (Eds.), Robots in

K-12 education: A new technology for learning (pp. 1–30). Hershey, PA:

Information Science Reference.

Eguchi, A. (2013). Educational robotics for promoting 21st century skills. Journal of

Automation, Mobile Robotics & Intelligent Systems, 8(1), 1–42.

https://doi.org/10.14313/JAMRIS

Ertmer, P. A., & Ottenbreit-Leftwich, A. T. (2010). Teacher technology change: How

knowledge, confidence, beliefs, and culture intersect. Journal of Research on

Technology in Education, 42(3), 255-284.

https://doi.org/10.1080/15391523.2010.10782551

Ertmer, P. A., Ottenbreit-Leftwich, A. T., Sadik, O., Sendurur, E., & Sendurur, P. (2012).

Teacher beliefs and technology integration practices: A critical relationship.

www.manaraa.com

232

Computers & Education, 59(2), 423-435.

https://doi.org/10.1016/j.compedu.2012.02.001

Erwin, B., Cyr, M., & Rogers, C. (2000). LEGO engineer and RoboLab: Teaching

engineering with LabVIEW from kindergarten to graduate school. International

Journal of Engineering Education, 16(3), 181-192.

Falloon, G. (2016). An analysis of young students’ thinking when completing basic

coding tasks using Scratch Jnr. on the iPad. Journal of Computer Assisted

Learning, 32(6), 576–593. https://doi.org/10.1111/jcal.12155

Feldgen, M. & Clua, O. (2004), Games as a motivation for freshman students learn

programming, in ‘Frontiers in Education, 2004. FIE 2004. 34th Annual’, pp.

S1H/11–S1H/16 Vol. 3.

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5-6 years old

kindergarten children in a computer programming environment: A case study.

Computers and Education, 63, 87–97.

https://doi.org/10.1016/j.compedu.2012.11.016

Feurzeig, W., Papert, S., Bloom, M., Grant, R., & Soloman, C. (1969). Programming-

languages as a conceptual framework for teaching mathematics. Programming-

languages as a conceptual framework for teaching mathematics. Final report on

the first fifteen months of the Logo Project (Technical Report 1889). Cambridge,

MA: BBN.

Field, A. P. (2009). Discovering statistics using SPSS. Los Angeles; London: SAGE.

Fishbein, M., & Ajzen, I. (1972). Beliefs, attitudes, intentions and behavior: An

introduction to theory and research. Reading, MA: Foster.

www.manaraa.com

233

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L., et

al. (2008). Debugging: Finding, fixing and flailing, a multi-institutional study of

novice debuggers. Computer Science Education, 18(2), 93–116. https

://doi.org/10.1080/08993 40080 21145 08.

Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential

of the concept, state of the evidence. Review of Educational Research, 74(1), 59–

109.

Frels R. K., & Onwuegbuzie, A. J. (2013). Administering quantitative instruments with

qualitative interviews: A mixed research approach. Journal of Counseling &

Development, 91(1), 184-194.

Garcia, D., Harvey, B., & Barnes, T. (2015). The beauty and joy of computing. ACM

Inroads, 6(4), 71–79. https://doi.org/10.1145/2835184

Gibbons, J. D., & Chakraborti, S. (2011). Nonparametric statistical inference (5th ed.).

Boca Raton, FL: Taylor & Francis Group, LLC.

Glynn, S. M., Brickman, P., Armstrong, N., & Taasoobshirazi, G. (2011). Science

motivation questionnaire II: Validation with science majors and nonscience

majors. Journal of Research in Science Teaching, 48(10), 1159–1176.

https://doi.org/10.1002/tea.20442

Glynn, S. M., Taasoobshirazi, G., & Brickman, P. (2009). Science motivation

questionnaire: Construct validation with nonscience majors. Journal of Research

in Science Teaching, 46(2), 127–146. https://doi.org/10.1002/tea.20267

Goh, H., & Ali, B. (2014). Robotics as a tool to stem learning. International Journal for

Innovation Education and Research, 2(10), 66–78.

www.manaraa.com

234

Good, J. (2011). Learners at the wheel: Novice programming environments come of age.

International Journal of People-Oriented Programming, 1(1), 1-24.

http://dx.doi.org/ 10.4018/ijpop.2011010101.

Google Inc., & Gallup Inc. (2016). Trends in the state of computer science in U.S. K-12

schools. Retrieved from http://goo.gl/j291E0

Govender, I., & Grayson, D. J. (2008). Pre-service and in-service teachers’ experiences

of learning to program in an object-oriented language. Computers and Education,

51(2), 874–885. https://doi.org/10.1016/j.compedu.2007.09.004

Greenley, W., & Tidwell, C. (2002). Legos in the classroom?: Teaching computer

programming to advanced high school students. In Hawaiian International

Business Conference (pp. 1–16).

Greenwood, D. J., & Levin, M. (2007). Introduction to action research (Vol. 2).

Thousand Oaks, CA: Sage.

Grover, S., & Basu, S. (2017). Measuring student learning in introductory block-based

programming: Examining misconceptions of loops, variables, and Boolean logic.

Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer

Science Education - SIGCSE ’17, 267–272.

https://doi.org/10.1016/j.pupt.2006.04.005

Grover, S., & Pea, R. (2013). Computational thinking in k-12: A review of the state of the

field. Educational Researcher, 42(1), 38–43.

https://doi.org/10.3102/0013189X12463051

Gunbatar, M. S., & Karalar, H. (2018). Gender differences in middle school students’

attitudes and self-efficacy perceptions towards mBlock programming. European

www.manaraa.com

235

Journal of Educational Research, 7(4), 925–933. https://doi.org/10.12973/eu-

jer.7.4.923

Gunning, A. M., & Mensah, F. M. (2011). Preservice elementary teachers’ development

of self-efficacy and confidence to teach science: A case study. Journal of Science

Teacher Education, 22(2), 171-185. https://doi.org/10.1007/s10972-010-9198-8

Guzdial, M., & Soloway, E. (2002). Teaching the Nintendo generation to program.

Communications of the ACM, 45(4),17–21.

Hadjiachilleos, S., Avraamidou, L., & Papastavrou, S. (2013). The use of Lego

technologies in elementary teacher preparation. Journal of Science Education

and Technology, 22(5), 614–629.

Hamari, J., Koivisto, J., & Sarsa, H. (2014). Does gamification work? A literature review

of empirical studies on gamification. Paper presented at the 2014 47th Hawaii

International Conference on System Sciences.

Han, I. (2013). Embodiment: A new perspective for evaluating physicality in learning.

Journal of Educational Computing Research, 49(1), 41– 59.

doi:10.2190/EC.49.1.b.

Han, J., & Yin, H. (2016). Teacher motivation: Definition, research development and

implications for teachers. Cogent Education, 3(1), 1–18.

https://doi.org/10.1080/2331186X.2016.1217819

Hanus, M. D., & Fox, J. (2015). Assessing the effects of gamification in the classroom: A

longitudinal study on intrinsic motivation, social comparison, satisfaction, effort,

and academic performance. Computers & Education, 80, 152-161.

Harasim, L. (2012). Learning theory and online technologies. New York: Routledge.

www.manaraa.com

236

Harel, I., & Papert, S. (1991). Constructionism. Norwood NJ: Ablex Publishing.

Hathcoat, J. D., & Meixner, C. (2017). Pragmatism, factor analysis, and the conditional

incompatibility thesis in mixed methods research. Journal of Mixed Methods

Research, 11(4), 433–449. https://doi.org/10.1177/1558689815622114

Herr, K., & Anderson, G.L. (2005). The action research dissertation. Thousand Oaks,

CA: Sage.

Hopkins, C. D. & Antes, R. L. (1990) Classroom management and evaluation (3rd ed.).

F.E. Itasca, IL: Pencock Publishing, Inc.

Howe, J. A. M. (1981). Learning mathematics through Logo programming (Research

Paper No 153). Department of Artificial Intelligence. Edinburgh: University of

Edinburgh.

Huang, K. H., Yang, T. M., & Cheng, C. C. (2013). Engineering to see and move:

Teaching computer programming with flowcharts vs. LEGO robots. International

Journal of Emerging Technologies in Learning, 8(4), 23–26.

Huang, Y., Backman, S. J., & Backman, K. F. (2010). Student attitude toward virtual

learning in second life: A flow theory approach. Journal of Teaching in Travel

and Tourism, 10(4), 312–334.

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015). Supporting all

learners in school-wide computational thinking: A cross-case qualitative analysis.

Computers and Education, 82, 263–279.

https://doi.org/10.1016/j.compedu.2014.11.022

Jaipal-Jamani, K., & Angeli, C. (2017). Effect of robotics on elementary preservice

teachers’ self-efficacy, science learning, and computational thinking. Journal of

www.manaraa.com

237

Science Education and Technology, 26(2), 175–192.

https://doi.org/10.1007/s10956-016-9663-z

Jayathirtha, G., Fields, D. A., & Kafai, Y. B. (2018). Computational concepts, practices,

and collaboration in high school students’ debugging electronic textile projects. In

the conference proceedings of the International conference on computational

thinking education (CTE’18), The Education University of Hong Kong, Hong

Kong, China. https://par.nsf.gov/servlets/purl/10101544

Jenkins, T. (2001). The motivation of students of programming. ACM SIGCSE Bulletin,

33(3), 53-56.

Jenkins, T. & Davy, J. (2002). Diversity and motivation in introductory programming.

Innovation in Teaching and Learning in Information and Computer Sciences (1)1.

1-9.

Johns, G. (1996). Organizational behavior: Understanding and managing life at work

(4th ed.). New York: HarperCollins.

Johnson-Laird, P. N. (1983). Mental models: towards a cognitive science of language,

inference, and consciousness. Cambridge, MA: Harvard University Press.

Jonassen, D. H. (2000). Computers as mindtools for schools: Engaging critical thinking

(2nd ed). Upper Saddle River, NJ: Prentice Hall.

Jonassen, D. H. (2011). Learning to solve problems: A handbook for designing problem

solving learning environments. New York, NY: Routledge.

Kabatova, M., & Pekarova, J. (2010). Learning how to teach robotics. Constructionism

2010 Conference, 1–8. https://doi.org/10.18848/1447-9494/cgp/v15i06/45812

www.manaraa.com

238

Kafai, Y. B., & Resnick, M. (1996). Constructionism in practice: Designing, learning and

thinking in a digital world. Mahwah, NJ: Lawrence Erlbaum Associates.

Kalyuga, S. (2010). Schema acquisition and sources of cognitive load. Cognitive Load

Theory, 48–64. https://doi.org/10.1017/CBO9780511844744.005

Karahoca, D., Karahoca, A., & Uzunboylu, H. (2011). Robotic teaching in primary

school education by project based learning for supporting science and technology

courses. Procedia Computer Science, 3, 1425–1431.

Katz, I. R., & Anderson, J. R. (1987). Debugging: An analysis of bug-location strategies.

Human–Computer Interaction, 3(4), 351.

Kay, J. S., Moss, J. G., Engelman, S., & McKlin, T. (2014). Sneaking in through the back

door: Introducing K-12 teachers to robot programming. Proceedings of the 45th

ACM Technical Symposium on Computer Science Education, 499–504.

https://doi.org/10.1145/2538862.2538972

Kaya, E., Newley, A., Deniz, H., Yesilyurt, E., & Newley, P. (2015). Introducing

engineering design to a science teaching methods course through educational

robotics and exploring changes in views of preservice elementary teachers.

Journal of College Science Teaching, 47(2), 66–75.

Kazakoff, E., Sullivan, A., & Bers, M. (2013). The effect of a classroom-based intensive

robotics and programming workshop on sequencing ability in early childhood.

Early Childhood Education Journal, 41(4), 245–255.

Kelleher, C., Pausch, R., & Kiesler, S. (2007). Storytelling Alice motivates middle school

girls to learn computer programming. Proceedings of the SIGCHI Conference on

www.manaraa.com

239

Human Factors in Computing Systems, CHI ’07, ACM. New York, NY, USA,

(pp. 1455–1464).

Keller, J. M. (1983). Motivational design of instruction. In C. M. Reigeluth (Ed.),

Instructional Design Theories and Models: An Overview of Their Current Status

(pp. 386–434). HillSDale, NJ: Lawrence Erlbaum Associates.

Keller, J. M. (1987). IMMS: Instructional materials motivation survey. Tallahassee, FL:

Florida State University.

Kim, C., Kim, D., Yuan, J., Hill, R. B., Doshi, P., & Thai, C. N. (2015). Robotics to

promote elementary education pre-service teachers’ STEM engagement, learning,

and teaching. Computers and Education, 91, 14–31.

https://doi.org/10.1016/j.compedu.2015.08.005

Kim, C., Yuan, J., Kim, D., Doshi, P., Thai, C. N., Hill, R. B., & Melias, E. (2017).

Studying the usability of an intervention to promote teachers’ use of robotics in

STEM education. Journal of Educational Computing Research, 56(8), 1179–

1212. https://doi.org/10.1177/0735633117738537

Kim, C., Yuan, J., Vasconcelos, L., Shin, M., & Hill, R. B. (2018). Debugging during

block-based programming. Instructional Science, 46(5), 767–787.

https://doi.org/10.1007/s11251-018-9453-5

Klatzky, R.L. (1980). Human memory: Structures and processes. San Francisco, CA:

W.H. Freeman & Co.

Kochhar-Bryant, C. A. (2017). Symbiotic space: exploring the nexus of rigor, problems

of practice and implementation. Impacting Education: Journal on Transforming

Professional Practice, 2(1), 6–14. https://doi.org/10.5195/IE.2017.25.

www.manaraa.com

240

Koller, A., & Kruijff, G.-J. M. (2004). Talking robots with LEGO MindStorms.

Proceedings of the 20th International Conference on Computational Linguistics -

COLING ’04. https://doi.org/10.3115/1220355.1220404

Kolling, M. & Rosenberg, J. (2001). Guidelines for teaching object orientation with Java.

SIGCSE Bullitin 33(3), 33–36.

Kopcha, T. J., McGregor, J., Shin, S., Qian, Y., Choi, J., Hill, R., … Choi, I. (2017).

Developing an integrative STEM curriculum for robotics education through

educational design research. Journal of Formative Design in Learning, 1(1), 31–

44. https://doi.org/10.1007/s41686-017-0005-1

Krapp, A., Hidi, S., & Renninger, K. A. (1992). Interest, learning, and development. In

K. A. Renninger, S. Hidi, & A. Krapp (Eds.), The role of interest in learning and

development (pp. 3- 25). HillSDale, NJ: Lawrence Erlbaum Associates, Inc.

Kristensen, B. B., & Osterbye, K. (1994). Conceptual modeling and programming

languages. ACM SIGPLAN Notices 29(9), 81-90.

Kucuk, S., & Sisman, B. (2018). Pre-service teachers’ experiences in learning robotics

design and programming. Informatics in Education, 17(2), 301–320.

https://doi.org/10.15388/infedu.2018.16

Kuittinen, M., & Sajaniemi, J. (2004). Teaching roles of variables in elementary

programming courses. SIGCSE Bulletin 36(3) 57-61.

Lambert, L., & Guiffre, H. (2009). Computer science outreach in an elementary school.

Journal of Computing Sciences in Colleges, 24(3), 118–124.

www.manaraa.com

241

Landry, C. L. (2003). Self-efficacy, motivation, and outcome expectation correlates of

college students’ intention certainty (Doctoral dissertation). Retrieved from

ProQuest Dissertation & Theses. (AAT 3085864)

Lanzonder, A. (2005). Do two heads search better than one? Effects of student

collaboration on web search behaviour and search outcomes. British Journal of

Educational Technology, 36(3), 465–475.

Lauwers, T., Nourbakhsh, I., & Hamner, E. (2009). CSbots: Design and deployment of a

robot designed for the CS1 classroom. Proceedings of the 40th Technical

Symposium on Computer Science Education (SIGCSE’09). 428–432.

Law, K., Lee, V., & Yu, Y. (2010). Learning motivation in e-learning facilitated

computer programming courses. Computers and Education (55)1. 218-228.

https://doi.org/10.1016/j.compedu.2010.01.007

Lawson, A. E., Banks, D. L., & Logvin, M. (2007). Self-efficacy, reasoning ability, and

achievement in college biology. Journal of Research in Science Teaching, 44,

706–724.

Levin, J. A., & Kereev, Y. (1980). Personal computers and education: The challenge to

schools. Center for Human Information Processing. La Jolla, CA: University of

California – San Diego.

Levin, T., & Long, R. (1981). Effective instruction. Alexandria, VA: Association for

Supervision and Curriculum Development.

Lister, R., Seppälä, O., Simon, B., Thomas, L., Adams, E. S., Fitzgerald, S., … Sanders,

K. (2004). A multi-national study of reading and tracing skills in novice

programmers. Working group reports from ITiCSE on Innovation and technology

www.manaraa.com

242

in computer science education - ITiCSE-WGR ’04.

https://doi.org/10.1145/1044550.1041673

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Thousand Oaks, CA: Sage.

Lindh, J., & Holgersson, T. (2007). Does Lego training stimulate pupils ability to solve

logical problems? Computers & Education, 49(4), 1097-1111.

Lord, F. M. (1952). The relationship of the reliability of multiple-choice test to the

distribution of item difficulties. Psychometrika, 17, 181-194.

Lu, J. J., & Fletcher, G. (2009). Thinking about computational thinking. Proceedings of

the 40th ACM Technical Symposium on Computer Science Education

(SIGCSE’09).

Lye, S., & Koh, J. (2014). Review on teaching and learning of computational thinking

through programming: What is next for K–12? Computers in Human Behaviour,

41, 51–61.

Majherova, J., & Kralik, V. (2017). Innovative methods in teaching programming for

future informatics teachers. European Journal of Contemporary Education, 6(3),

390–401. https://doi.org/10.13187/ejced.2017.3.390

Major, L., Kyriacou, T., & Brereton, P. (2014). The effectiveness of simulated robots for

supporting the learning of introductory programming: a multi-case case study.

Computer Science Education, 24(2–3), 193–228.

https://doi.org/10.1080/08993408.2014.963362

Malan, D. J., & Leitner, H. H. (2007). Scratch for budding computer scientists. ACM

SIGCSE Bulletin, 39(1), 223. https://doi.org/10.1145/1227504.1227388

www.manaraa.com

243

Manches, A., & Price, S. (2011). Designing learning representations around physical

manipulation, 81–89. Proceedings of the 10th international conference on

interaction design and children. https://doi.org/10.1145/1999030.1999040

Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., & Settle,

A. (2014). Computational thinking in K-9 education. Proceedings of the Working

Group Reports of the 2014 on Innovation & Technology in Computer Science

Education Conference - ITiCSE-WGR ’14, 1–29.

https://doi.org/10.1145/2713609.2713610

Martin, A. J. (2003). The Student Motivation Scale: Further testing of an instrument that

measures school students’ motivation. Australian Journal of Education, 47, 88-

106.

Martin, A. J. (2007). Examining a multidimensional model of student motivation and

engagement using a construct validation approach. British Journal of Educational

Psychology, 77(2), 413–440. https://doi.org/10.1348/000709906X118036

Martin, A. (2012). Part II commentary: Motivation and engagement: Conceptual,

operational, and empirical clarity. In S. L. Christenson, A. L. Reschly, & C. Wylie

(Eds.), Handbook of Research on Student Engagement (pp. 303-311). New York,

NY: Springer US.

Martin, F. G., Mikhak, B., Resnick, M., Silverman, B. & Berg, R. (2000). To Mindstorms

and beyond: Evolution of a construction kit for magical machines. In A. Druin &

J. Hendler (Eds.), Robots for kids: Exploring new technologies for learning (pp.

9–33). San Mateo, CA: Morgan Kaufmann.

www.manaraa.com

244

Martin, F. G, Scribner-MacLean, M., Christy, S., Rudnicki, I., Londhe, R., Manning, C.,

& Goodman, I. F. (2011). Reflections on iCODE: Using web technology and

hands-on projects to engage urban youth in computer science and engineering.

Autonomous Robots, 30(3), 265–280. https://doi.org/10.1007/s10514-011-9218-3

Martin, F. G., & Resnick, M. (1993). LEGO/Logo and electronic bricks: creating a

scienceland for children. In D. Ferguson (Ed.), Advanced educational

technologies for mathematics and science (pp. 61–90). Berlin: Springer

Marsh, H. W., Balla, J. R., & McDonald, R. P. (1988). Goodness-of-fit indices in

confirmatory factor analysis: The effect of sample size. Psychological Bulletin,

102, 391-410.

Marzano, R. J. (2007). The art and science of teaching. Alexandria, VA: ASCD.

Maslow, A. H. (1943). A theory of human motivation. Psychology Review 50, 370–396.

Maxwell, J.A. (2010). Using numbers in qualitative research. Qualitative Inquiry, 16(6),

475–482. http://doi.org/10.1177/1077800410364740

Mayer, R. E. (1979). A psychology of learning BASIC. Communications of the ACM,

22(11), 589-593.

Mayer, R. E. (1981). The psychology of how novices learn computer programming. ACM

Computing Surveys, 13(1): 121-141.

McClelland, J. L. (2011). Memory as a constructive process: The parallel-distributed

processing approach. In S. Nalbantian, P. Matthews, and J. L. McClelland (Eds.),

The memory process: Neuroscientific and humanistic perspectives (pp. 129-151).

Cambridge, MA: MIT Press.

www.manaraa.com

245

McGill, M. M. (2012). Learning to program with personal robots. ACM Transactions on

Computing Education, 12(1), 1–32. https://doi.org/10.1145/2133797.2133801

McGill, T. J., & Volet, S. E. (1997). A conceptual framework for analyzing students'

knowledge. Journal of Research on Computing in Education 29(3), 276-298.

McMillan, J. H. (2016). Fundamentals of educational research (7th ed.). Boston:

Pearson.

McNally, M., Goldweber, M., Fagin, B., & Klassner, F. (2006). Do Lego Mindstorms

robots have a future in CS education? ACM SIGCSE Bulletin, 38(1), 61.

https://doi.org/10.1145/1124706.1121362

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer science

with scratch. Computer Science Education, 23(3), 239–264.

Merriam, S.B. (1998). Qualitative research and case study applications in education. San

Francisco, CA: Jossey-Bass.

Merriam, S.B., Johnson-Bailey, J., Lee, M.-Y., Kee, Y., Ntseane, G., & Muhamad, M.

(2001). Power and positionality: Negotiating insider/outsider status within and

across cultures. International Journal of Lifelong Education, 20(5), 405–416.

http://doi.org/10.1080/02601370120490

Merriam, S. B. & Tisdell, E. J. (2016). Qualitative research: A guide to design and

implementation, (4th ed.). Hoboken, N.J.: Wiley.

Mertler, C. A. (2017). Action research: Improving schools and empowering educators

(5th ed.). Thousand Oaks, CA: Sage.

www.manaraa.com

246

Mertens, D.M. (2009). Research and evaluation in education and psychology:

Integrating diversity with quantitative, qualitative, and mixed methods. Thousand

Oaks, CA: Sage.

Mikropoulos, T., & Bellou, I. (2013). Educational robotics as mindtools. Themes in

Science & Technology Education., 6(1), 5–14.

Miller, G. (1956). The magical number seven, plus or minus two: some limits on our

capacity for processing information. Psychological Review, 101(2), 343–352.

https://doi.org/10.1037/h0043158

Mills, G. E. (2018). Action research: A guide for the teacher researcher (6th ed.). New

York: Pearson.

Milton, M., Rohl, M., & House, H. (2007). Secondary beginning teacher's preparedness

to teach literacy and numeracy: A survey. Australian Journal of Teacher

Education, 32(2). https://doi.org/10.14221/ajte.2007v32n2.4

Moreno-Leon, J., & Robles, G. (2015). Developing mathematical thinking with Scratch:

An experiment with 6th grade students. Proceedings of design for teaching and

learning in a networked world: 10th European conference on technology

enhanced learning, EC-TEL (Vol. 9307). Toledo, Spain.

https://doi.org/10.1007/978-3-319-24258-3

Morgan, D. (2014). Integrating qualitative and quantitative methods: A pragmatic

approach. Thousand Oaks, CA: Sage. https://doi.org/10.1016/B978-0-444-53802-

4.00055-5

Morgan, D. (2018). Basic and advanced focus groups. Thousand Oaks, CA: Sage.

www.manaraa.com

247

Myers, B. A. (1990). Taxonomies of visual programming and program visualization.

Journal of Visual Languages & Computing, 1(1), 97–123.

National Association of Colleges and Employers. (2018). Salary survey: Winter 2018.

Retrieved from https://careers.kennesaw.edu/employers/docs/2018-nace-salary-

survey-winter.pdf

Navarro-Prieto, R. & Canas, J. J. (2001). Are visual programming languages better? The

role of imagery in program comprehension. International Journal of Human-

Computer Studies, 54, 799-829.

Newell, A. & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ:

Prentice-Hall.

Norman, D. A., & Rumelhart, D. E. (1975). Explorations in cognition. San Francisco,

CA: Freeman.

Nugent, G., Barker, B., Grandgenett, N., & Adamchuk, V. (2010). Impact of robotics and

geospatial technology interventions on youth STEM learning and attitudes.

Journal of Research on Technology in Education, 42(4), 391-408. doi:

2056317171.

O’Keefe, P. A. & Harackiewicz, J. M. (2017). The multifaceted role of interest in

motivation and engagement. In P.A. O’Keefe & J. M. Harackiewicz (Eds.), The

Science of Interest. Montreal, Canada: Springer International Publishing.

https://doi.org/10.1007/978-3-319-55509-6

Ormerod, T. (1990). Human cognition and programming. In J. M. Hoc, T. R. G. Green,

R. Samurcay, and D. J. Gilmore (Eds.), Psychology of Programming (63-82). San

Diego, CA: Academic Press.

www.manaraa.com

248

Ortiz, A., Bos, B., & Smith, S. (2015). The power of educational robotics as an integrated

STEM learning experience in teacher preparation programs. Journal of College

Science Teaching, 44(5). https://doi.org/10.2505/4/jcst15_044_05_42

Osborne, R. B., Thomas, A. J., & Forbes, J. (2010). Teaching with robots: A service-

learning approach to mentor training. In ACM Technical Symposium on Computer

Science Education (SIGCSE 2010), Milwaukee, WI.

https://doi.org/10.1145/1734263.1734321

Pajares, F. (1996). Self-efficacy beliefs in achievement settings. Review of Educational

Research 66, 543-578.

Palak, D., & Walls, R. T. (2009). Teachers’ beliefs and technology practices: A mixed

methods approach. Journal of Research on Technology in Education, 47(4), 417-

441.

Pallant, J. (2007). SPSS survival manual: A step by step guide to data analysis using

SPSS for Windows, 3rd Edition. McGraw Hill Open University Press, New York.

Papert, S. (1980). Mindstorms: Children, computers and powerful ideas. New York, NY:

Basic Books.

Papert, S. (1990). A critique of technocentrism in thinking about the school of the future.

MIT Epistemology and Learning Memo No. 2. Cambridge, MA: MIT Media

Laboratory.

Papert, S. (1993). The children’s machine. New York, NY: Basic Books

Papert, S. (1999). Constructionism: Research reports and essays. Norwood, NJ: Ablex.

www.manaraa.com

249

Papert, S., Watt, D., diSessa, A., & Weir, S. (1979). An assessment and documentation of

a children’s computer laboratory. Final Report of the Brookline Logo Project.

Brookline, MA.

Pappas, P. A., & DePuy, V. (2004). An overview of non-parametric tests in SAS: When,

Why, and How. Duke Clinical Research Institute. Durham: North Carolina.

Retrieved from http://analytics.ncsu.edu/sesug/2004/TU04-Pappas.pdf.

Paraskeva, F., Bouta, H., & Papagianni, A. (2008). Individual characteristics and

computer self-efficacy in secondary education teachers to integrate technology in

educational practice. Computers and Education, 50(3), 1084–1091.

https://doi.org/10.1016/j.compedu.2006.10.006

Parsons, S. A., & Ward, A. E. (2011). The case for authentic tasks in content literacy.

Reading Teacher, 64, 462–465. doi:10.1598/RT.64.6.12

Patton, M. Q. (2002). Qualitative research and evaluation methods. Thousand Oaks, CA:

Sage.

Pea, R. (1983). Logo programming and problem solving. ERIC Technical Report No. 12.

Pea, R., & Kurland, M. (1984). On the cognitive effects of learning computer language.

New Ideas in Psychology, 2(2), 137–168.

https://doi.org/10.1109/BLOCKS.2015.7368989

Pennington, N. (1986). Stimulus structures and mental representations in expert

comprehension of computer programs. Cognitive Psychology, 19, 295-341.

Pennington, N. (1987). Comprehension strategies in programming. In G. M. Olson, S.

Sheppard, and E. Soloway (Eds.), Empirical Studies of Programmers: Second

Workshop (pp. 100-113). Norwood, NJ: Ablex.

www.manaraa.com

250

Perlman, R. (1974). TORTIS – Toddler’s Own Recursive Turtle Interpreter System. In

MIT AI Memo 311, Logo Memo 9. Cambridge, MA: Massachusetts Institute of

Technology, Retrieved from ftp://publications.ai.mit.edu/ai-

publications/pdf/AIM-311.pdf

Perritt, D. C. (2010). Including professional practice in professional development while

improving middle school teaching in math. National Teacher Education Journal,

3(3), 73–76. Retrieved from

http://ezp.lib.ttu.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true

&db=eue&AN=57457833

Peshkin, A. (1988). In search of subjectivity – One's own. Educational Researcher,

17(7), 17-21. Retrieved from

http://www.jstor.org.pallas2.tcl.sc.edu/stable/1174381

Petre, M., & Price, B. (2004). Using robotics to motivate ‘back door’ learning. Education

and Information Technologies, 9(2), 147–158.

https://doi.org/10.1023/B:EAIT.0000027927.78380.60

Phillippi, J. & Lauderdale, J. (2018). A guide to field notes for qualitative research:

Context and conversation. Qualitative Health Research, 28(3). Retrieved from

https://journals.sagepub.com/doi/pdf/10.1177/1049732317697102

Piaget, J. (1967). The child’s conception of the world. New York, NY: Routledge &

Kegan Paul.

Piaget, J. (1973). To understand is to invent. New York, NY: Basic Books.

Pintrich, P. R. (1999). The role of motivation in promoting and sustaining self-regulated

learning. International Journal of Educational Research, 31, 459-470.

www.manaraa.com

251

Pintrich, P. R., & DeGroot, E. V. (1990). Motivational and self-regulated learning

components of classroom academic performance. Journal of Educational

Psychology, 82(1), 33-40.

Pintrich, P. R., & Schunk, D. H. (1996). Motivation in Education: Theory, Research, and

Applications. Englewood Cliffs, NJ: Merrill/Prentice-Hall.

Qualls, J. A., & Sherrell, L. B. (2010). Why computational thinking should be integrated

into the curriculum. Journal of Computing Sciences in Colleges, 25, 66-71.

Ramalingam, V., & Wiedenbeck, S. (1997). An empirical study of novice program

comprehension in the imperative and object-oriented styles. In ESP ’97 Papers

presented at the seventh workshop on Empirical studies of programmer (pp. 124–

139). https://doi.org/10.1145/266399.266411

Renninger, K.A., & Hidi, S. (2011). Revisiting the conceptualization, measurement, and

generation of interest. Educational Psychology 46(3),168–184.

Resnick, M. (2007). Sowing the seeds for a more creative society. Learning & Leading

with Technology, 35(4), 18-22.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K.,

Millner, A., Rosenbaum, E., Silverman, B., & Kafai, Y. (2009). Scratch:

programming for all. Communications of the ACM, 52(11), 60–67.

Resnick, M., Ocko, S., & Papert, S. (1988). LEGO, Logo, and design. Children's

Environments Quarterly, 5(4), 14-18.

Resnick, M., & Silverman, B. (2005). Some reflections on designing construction kits for

kids. Proceedings of Interaction Design and Children Conference, Boulder, CO.

www.manaraa.com

252

Rheinberg, F., Vollymeyer, R., & Burns, B. (2001). FAM: A questionnaire on motivation

in learning and performance situations. Diagnostica, 47(2), 57–66.

http://dx.doi.org/10.1026//0012-1924.47.2.57

Rich, L., Perry, H., & Guzdial, M. (2004). A CS1 course designed to address interests of

women. Proceedings of the 34th ACM Technical Symposium on Computer

Science Education (SIGCSE’04). 190–195.

Roschelle, J., & Teasley, S. D. (1994). The construction of shared knowledge in

collaborative problem solving. NATO ASI Series F Computer and Systems

Sciences, 128, 69–69.

Rogers, C. B., Wendell, K, & Foster, J. (2010). The academic bookshelf: A review of the

NAE Report, "Engineering in K-12 education.". Journal of Engineering

Education, 99(2), 179-181. Retrieved from

http://findarticles.com/p/articles/mi_qa3886/is_201004/ai_n53931016/

Rogerson, C., & Scott, E. (2010). The fear factor: How it affects students learning to

program in a tertiary environment. Journal of Information Technology Education:

Research, 9, 147–171. https://doi.org/10.28945/1183

Rudestam, K. E., & Newton, R. R. (2007). Surviving your dissertation: A comprehensive

guide to content and process. Thousand Oaks, CA: Sage.

Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of

intrinsic motivation, social development, and well-being. American Psychologist,

55, 68–78.

Ryan, R. M., & Deci, E. L. (2020). Intrinsic and extrinsic motivation from a self-

determination theory perspective: Definitions, theory, practices, and future

www.manaraa.com

253

directions. Contemporary Educational Psychology, (in press), 101860.

https://doi.org/10.1016/j.cedpsych.2020.101860

Sáez-López, J. M., Román-González, M., & Vázquez-Cano, E. (2016). Visual

programming languages integrated across the curriculum in elementary school: A

two year case study using “Scratch” in five schools. Computers and Education,

97, 129–141. https://doi.org/10.1016/j.compedu.2016.03.003

Saldaña, J. (2016). The coding manual for qualitative researchers (3rd ed.). Thousand

Oaks, CA: Sage Publications.

Salkind, N. J. (2010). Encyclopedia of research design (Vols. 1-0). Thousand Oaks, CA:

SAGE Publications, Inc. doi: 10.4135/9781412961288

Sandholtz, J.H., & Ringstaff, C. (2014). Inspiring instructional change in elementary

school science: The relationship between enhanced self-efficacy and teacher

practices. Journal of Science Teacher Education, 25(6), 729-751.

https://doi.org/10.1007/s10972-014-9393-0

Scaife, M., & Rogers, Y. (2005). External cognition, innovative technologies, and

effective learning. In P. Gardenfors & P. Johansson (Eds.), Cognition, Education

and Communication Technology (pp. 181-202). Mahwah, NJ: Lawrence Erlbaum

Associates.

Schanzer, E. (2015). Algebraic functions, computer programming, and the challenge of

transfer (Doctoral dissertation). https://doi.org/10.1017/CBO9781107415324.004

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating

computational thinking with K-12 science education using agent-based

www.manaraa.com

254

computation: A theoretical framework. Education and Information Technologies,

18(2), 351-380. https://doi.org/10.1007/s10639-012-9240-x

Shafer, D. S. & Zhang, Z. (2012). Introductory statistics. Washington, DC: Saylor

Foundation.

Shenton, A.K. (2004). Strategies for ensuring trustworthiness in qualitative research

projects. Education for Information, 22(2), 63-75.

Sinclair, C. (2008). Initial and changing student teacher motivation and commitment to

teaching. Asia-Pacific Journal of Teacher Education, 36(2), 79–104.

https://doi.org/10.1080/13598660801971658

Sinclair, C., Dowson, M., & McInerney, D. (2006). Motivations to teach: Psychometric

and longitudinal perspectives. Teachers College Record, 108(6), 1132–1154.

Singh, K., Granville, M., & Ditka, S. (2002). Mathematics and science achievement:

Effects of motivation, interest, and academic engagement. The Journal of

Educational Research, 95(6). https://doi.org/10.1080/00220670209596607

Sisman, B., & Kucuk, S. (2019). An educational robotics course: Examination of

educational potentials and preservice teachers’ experiences. International Journal

of Research in Education and Science, 5(1), 510–531. Retrieved from

https://www.ijres.net/index.php/ijres/article/view/505

Skinner, B. F. (1954). The science of learning and the art of teaching. Harvard Education

Review 24(2) 86–97.

Skinner, E. A., Kindermann, T. A., & Furrer, C. J. (2009). A motivational perspective on

engagement and disaffection. Educational and Psychological Measurement,

69(3), 493–525. https://doi.org/10.1177/0013164408323233

www.manaraa.com

255

Smith, M. L. (2013). A case study: Motivational attributes of 4-H participants engaged in

robotics. (Doctoral dissertation). Retrieved from ProQuest Dissertation & Theses.

(AAT 3558978)

Smith, E. E, Shoben, E. J., & Rips, L. J. (1974). Structure and process in semantic

memory: A featural model for semantic decisions. Psychological Review, 81, 214-

241.

Soloway, E., & Ehrlich, K. (1984). Empirical studies of programming knowledge. IEEE

Transactions on Software Engineering, 10(5), 595-609.

South Carolina Commission on Higher Education. (2016). Consideration of new federal

Improving Teacher Quality competitive grants awards, FY 2015-16. Columbia,

SC. Retrieved from

https://www.che.sc.gov/CHE_Docs/commission%20calendar&materials/2016/Fe

bruary/Agenda_Item_902A.pdf

South Carolina Department of Education. (2017). South Carolina computer science and

digital literacy standards. Columbia, SC. Retrieved from

https://ed.sc.gov/scdoe/assets/File/instruction/standards/Computer%20Science/FI

NAL_South_Carolina_Computer_Science_and_Digital_Literacy_Standards_(SB

EApproved050917)063017.pdf

Staszowski, K., & Bers, M. U. (2005). The effects of peer interactions on the

development of technological fluency in an early-childhood, robotic learning

environment. In Proceedings of the American Society for Education Annual

Conference & Exposition. Retrieved from

www.manaraa.com

256

http://labview8.ni.com/pub/devzone/tut/theeffectsofpeer....pdf%5Cnpapers2://pub

lication/uuid/E66F72F2-4596-4B00-81E1-B82EC0FA65F0

Strauss, A., & Corbin, J. (1990). Basics of qualitative research: Grounded theory

procedures and techniques. Newbury Park, CA: Sage.

Strawhacker, A., & Bers, M. U. (2015). “I want my robot to look for food”: Comparing

kindergartner’s programming comprehension using tangible, graphic, and hybrid

user interfaces. International Journal of Technology and Design Education, 25(3),

293–319. https://doi.org/10.1007/s10798-014-9287-7

Sullivan, F., & Moriarty, M. (2009). Robotics and discover learning: Pedagogical beliefs,

teacher practice, and technology integration. Journal of Technology and Teacher

Education, 17, 109–142. Retrieved from

http://people.umass.edu/florence/jtate.pdf%5Cnpapers2://publication/uuid/284416

E1-4D1B-48FA-8F07-583B7FCCFA47

Svinicki, M. A. (2010). Guidebook on conceptual frameworks for research in

engineering education. www.ce.umn.edu/∼Smith/docs/RREE-Research-

Frameworks Svinicki.pdf.

Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design.

Learning and Instruction, 4, 295–312. https://doi.org/10.1016/0959-

4752(94)90003-5

Taylor, F. W. (1916). The principles of scientific management. Bulletin of the Taylor

Society.

Thompson, G. (2008). Beneath the Apathy. Educational Leadership, 65(6), 50–54.

www.manaraa.com

257

Trees, F. P. (2010). A meta-analysis of pedagogical tools used in introductory

programming courses (Doctoral dissertation). Retrieved from

http://ezproxy.library.nyu.edu:2148/pqdtft/docview/305239837/abstract/138B68F

802A21839DB5/12?accountid=12768%5Cn

Tsay, C. H., Kofinas, A. K., Trivedi, S. K., & Yang, Y. (2019). Overcoming the novelty

effect in online gamified learning systems: An empirical evaluation of student

engagement and performance. Journal of Computer Assisted Learning, 36(2),

128-146.

Ucgul, M. (2013). History and educational potential of Lego Mindstorms NXT. Mersin

University Journal of the Faculty of Education, 9(2), 127–137.

United States Department of Labor (2018). Employment projections. Washington DC:

Government Printing Office. Retrieved from

https://www.bls.gov/emp/tables/fastest-growing-occupations.htm

Vessey, I. (1985). Expertise in debugging computer systems: A process analysis.

International Journal of Man–Machine Studies, 23(5), 459–494. https

://doi.org/10.1016/S0020 -7373(85)80054 -7.

Vollmeyer, R. R., & Rheinberg, F. (2006). Motivational effects on self-regulated learning

with different tasks. Educational Psychology Review, 18, 239–253.

Vygotsky, L. S. (1980). Mind in society: The development of higher psychological

processes. Cambridge, MA: Harvard University Press.

Wang, E. (2001). Teaching freshmen design, creativity and programming with LEGOs.

Proceedings of the 31st ASEE/IEEE Frontiers in Education Conference. Reno,

www.manaraa.com

258

NV, October 10-13, 2001. Retrieved from

http://fie.engrng.pitt.edu/fie2001/papers/1291.pdf

Wang, T. C., Mei, W. H., Lin, S. L., Chiu, S. K., & Lin, J. M. C. (2009). Teaching

programming concepts to high school students with Alice. Proceedings -

Frontiers in Education Conference, FIE.

https://doi.org/10.1109/FIE.2009.5350486

Wang, X. C., & Ching, C. C. (2003). Social construction of computer experience in a

first-grade classroom: Social processes and mediating artifacts. Early Education

and Development, 14(3), 335-361.

Weintrop, D. (2016). Modality matters: Understanding the effects of programming

language representation in high school computer science classrooms (Doctoral

dissertation). Retrieved from ProQuest Dissertation & Theses. (AAT 10160575)

Weintrop, D., & Wilensky, U. (2015). To block or not to block, that is the question:

Students’ perceptions of blocks-based programming. Proceedings for the 14th

International Conference on Interaction Design and Children, (2), 199–208.

https://doi.org/http://dx.doi.org/10.1145/2771839.2771860

Weintrop, D., & Wilensky, U. (2017). Comparing block-based and text-based

programming in high school computer science classrooms. ACM Transactions on

Computing Education, 18(1), 1–25. https://doi.org/10.1145/3089799

Werner, L., Campe, S., & Denner, J. (2012). Children learning computer science

concepts via Alice game-programming. SIGSCE ’12 Proceedings of the 43rd

ACM Technical Symposium on Computer Science Education, 427–432.

https://doi.org/10.1145/2157136.2157263

www.manaraa.com

259

Wiedenbeck, S. (2005). Factors affecting the success of non-majors in learning to

program. In Proceedings of the Conference on International Computing

Education Research (ICER’05). 13-24.

Wigfield, A., & Eccles, J. S. (2000). Expectancy–value theory of achievement

motivation. Contemporary Educational Psychology, 25, 68–81.

doi:10.1006/ceps.1999.1015

Willems, P., & Gonzalez-DeHass, A. R. (2012). School–community partner- ships: Using

authentic contexts to academically motivate students. School Community Journal,

22(2), 9–30.

Wilson, A., & Moffat, D. C. (2010). Evaluating Scratch to introduce younger

schoolchildren to programming. Proceedings of the 22nd Annual Workshop of the

Psychology of Programming Interest Group, 64–75.

Wilson, C., Sudol, L., Stephenson, C., & Stehlik, M. (2010). Running on empty: The

failure to teach K-12 computer science in the digital age. The Association for

Computing Machinery. https://doi.org/10.1353/hpu.2010.0941

Witney, D., & Smallbone, T. (2011). Wild work: Can using wilds enhance student

collaboration for group assignment tasks? Innovations in Education and Teaching

International, 48(1), 101–110. doi:10. 1080/14703297.2010.54376.

Yadav, A., Good, J., Voogt, J., & Fisser, P. (2017). Computational thinking as an

engineering competence domain. In M. Mulder (Ed.), Competence-based

vocational and professional education (pp. 1051-1067).

https://doi.org/10.1007/978-3-319-41713-4_51

www.manaraa.com

260

Yadav, A., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational thinking in

elementary and secondary teacher education. ACM Transactions on Computing

Education, 14(1), 1–16. https://doi.org/10.1145/2576872

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., & Korb, J. T. (2011). Introducing

computational thinking in education courses. Proceedings of the 42nd ACM

technical symposium on computer science education.

https://doi.org/10.1145/1953163.1953297

Yamazaki, S., Sakamoto, K., Honda, K., Washizaki, H., & Fukazawa, Y. (2015).

Comparative study on programmable robots as programming education tools. ACE

2015.

Yonghiu, C. (2010). Study of flow theory and experiential learning. Proceedings of the

2nd International Conference on Multimedia and Information Technology

(MMIT’10). 2, 334–337.

Zeni, J. (1998). A guide to ethical issues and action research. Educational Action

Research, 6(1), 9–19. https://doi.org/10.1080/09650799800200053

www.manaraa.com

261

APPENDIX A

 ROBOTICS LESSON PLANS, SCHEMATICS, AND EXAMPLES

Figure A.1. The lesson plan for Basic Procedures class one.

Lesson Plan: Basic Procedures Class 1

SC State

Computer

Science

Standards

• Standard 1: Recognize that many daily tasks can be described as step-by-

step instructions (i.e., algorithms).

• Standard 4: Develop a program to express an idea or address a problem

EDUC 204

Student

Learning

Outcome

• 1) Demonstrate understanding of technology concepts, tools, systems and

operations to enhance teaching practice, professional productivity, and

student performance.

Objectives • Students will be able to test and debug a program

• Students will be able to create a functioning program

Materials Lego EV3 robot; computer; Lego EV3 programming software

Procedures The class will begin with a demonstration of how to use the Basic Procedures

programming blocks. Special attention will be paid to demonstrating how to

update each of the programming blocks for number of rotations, degrees, or

running for a specific number of seconds. How to program the robots to turn will

also be demonstrated. The debugging process will be demonstrated to help

participants for when they encounter errors.

Participants will be paired and given a pre-built Lego robot and a laptop with the

programming software. Pairs of participants will experiment with programming

the robots. Participants will be instructed to rotate the robot and programming

hands-on time between each member of the pair so that all pairs receive hands-on

time programming the robot. The instructor will provide scaffolding as needed

and will assist with debugging. As an exit ticket to finish the class, participants

will be asked to share one discovery they have made as a result of their free time.

Exit Ticket • Share one discovery groups have made while programming their robots

www.manaraa.com

262

Lesson Plan: Basic Procedures Class 2

SC State

Computer

Science

Standards

• Standard 1: Recognize that many daily tasks can be described as step-by-

step instructions (i.e., algorithms).

• Standard 4: Develop a program to express an idea or address a problem.

EDUC 204

Student

Learning

Outcome

• 1) Demonstrate understanding of technology concepts, tools, systems and

operations to enhance teaching practice, professional productivity, and

student performance.

Lesson

Objectives
• Students will be able to calculate values for a program

• Students will be able to use different methods of programming to solve a

problem

Materials Lego EV3 robot; computer; Lego EV3 programming software; meter stick or pre-

measured one meter of electrical tape

Procedures To begin, pairs will be instructed on odometry and how teachers can use odometry

in the classroom. Pairs will be given a pre-built Lego robot and a laptop with the

programming software. The instructor will explain to the pairs that the robots can

record how far the robots have travelled. The robots can record how many degrees

the wheels have rotated. Using this data pairs will calculate how far each wheel

rotation moves the robot. Pairs will then calculate how far each rotation moves

their robots.

Then, the One Meter Challenge will be introduced. Pairs will be challenged to

program their robots to travel one meter in three different ways. The first way

pairs can program their robots to move one meter is by using the move steering

program block and customizing the number of rotations to their calculated

odometer length. The second way pairs can program their robots is by a total

number of degrees based on their calculations. The third way is that pairs can

program their robots to move at a certain power for a certain number of seconds to

reach one meter. The instructor will roam the room and provide scaffolding as

needed.

Figure A.2. The lesson plan for Basic Procedures class two.

Figure A.3. A possible solution for the One Meter Challenge.

www.manaraa.com

263

Lesson Plan: Advanced Procedures Class 1

SC State

Computer

Science

Standards

• Standard 1: Design, evaluate, and modify simple algorithms (e.g., steps

to make a sandwich; steps to a popular dance; steps for sending an

email).

• Standard 3: Decompose problems into subproblems and write code to

solve the subproblems (i.e., break down a problem into smaller parts).

EDUC 204

Student

Learning

Outcome

• 1) Demonstrate understanding of technology concepts, tools, systems

and operations to enhance teaching practice, professional productivity,

and student performance.

Lesson

Objectives
• Students will be able to predict the outcome of a program

• Students will be able to modify a simple program

Materials Paper; pencil; Lego EV3 robot; computer; Lego EV3 programming software;

Lego EV3 box

Description The instructor will start by introducing turning to participants. After

demonstrating how to program turns, the instructor will demonstrate how to write

pseudocode and how teachers can use pseudocode in the classroom.

Then, the instructor will introduce the lap activity. Participants will be divided

into pairs and will be given a pre-built Lego robot and a laptop with the

programming software. For the lap activity, pairs will be challenged to modify a

given program so that their robots move around the box their robot came in. The

robots must complete one full lap around the box without touching the box or

straying outside of one foot from the box. Pairs will note that not all turns will be

accurate due to friction and grip. The instructor will provide scaffolding as

needed. Pairs will be instructed to make sure they save their Lap Activity

programs, because they will be used again later.

Figure A.4. The lesson plan for Advanced Procedures class one.

Figure A.5. A possible solution for the Lap Activity.

www.manaraa.com

264

Lesson Plan: Advanced Procedures Class 2

SC State

Computer

Science

Standards

• Standard 1: Design, evaluate, and modify simple algorithms (e.g., steps

to make a sandwich; steps to a popular dance; steps for sending an

email).

• Standard 3: Decompose problems into subproblems and write code to

solve the subproblems (i.e., break down a problem into smaller parts).

EDUC 204

Student

Learning

Outcome

• 1) Demonstrate understanding of technology concepts, tools, systems

and operations to enhance teaching practice, professional productivity,

and student performance.

Lesson

Objectives
• Students will be able to predict the outcome of a program

• Students will be able to create a program to solve a problem

Materials Paper; pencil; Lego EV3 robot; computer; Lego EV3 programming software;

maze made of electrical tape

Procedures The class will begin with another pseudocode demonstration and activity.

Pseudocode will be reviewed. Participants will divide into pairs of four students

and will be given a pre-built Lego robot and a laptop with the programming

software. Then, pairs will write their pseudocode for navigating a maze. After

pairs have created their pseudocode for navigating the maze, the pairs will

translate their pseudocode into programming to solve the Maze Challenge.

Six identical mazes will be marked off with black electrical tape on the floor

throughout the classroom for efficiency in order to provide ample opportunity for

pairs to test their programming. The robots should not touch the lines as they

navigate the maze. If pairs complete the maze successfully in before the class

period is over, they will be invited to try to solve the maze from the unmarked

corner to the other unmarked corner in a much more difficult programming

challenge. The instructor will provide scaffolding as needed.

Figure A.6. The lesson plan for Advanced Procedures class two.

Figure A.7. The schematic for the Maze Challenge. Plans for this maze are derived from

the Coastal Robotics curriculum.

www.manaraa.com

265

Lesson Plan: Control Structures Class 1

SC State

Computer

Science

Standards

• Standard 2: Use and compare simple coding control structures (e.g., if-

then, loops).

EDUC 204

Student

Learning

Outcome

• 1) Demonstrate understanding of technology concepts, tools, systems and

operations to enhance teaching practice, professional productivity, and

student performance.

Lesson

Objectives
• Students will be able to predict the outcome of a program that uses control

structures

• Students will be able to create a program using control structures

Materials Lego EV3 robot; computer; Lego EV3 programming software; meter stick or pre-

measured one meter of electrical tape

Procedures To begin, pairs will be instructed on control structures and how teachers can use

wait, switch, and looping concepts to teach basic computer programming concepts

in the classroom. Participants will predict the outcomes of the demonstrated

programs. The instructor will then demonstrate how to write a program using each

of the control structures. Participants will divide into pairs and will be given a pre-

built Lego robot and a laptop with the programming software.

After that, the instructor will introduce the Slithering One Meter Activity. Pairs will

then begin programming their robots to complete the activity. Pairs will test their

programs against either a meter stick or a pre-cut line of tape measuring one meter.

The instructor will provide scaffolding as needed.

Figure A.8. The lesson plan for Control Structures class one.

Figure A.9. A possible solution for the Slithering One Meter Challenge.

www.manaraa.com

266

Lesson Plan: Control Structures Class 2

SC State

Computer

Science

Standards

• Standard 2: Use and compare simple coding control structures (e.g., if-

then, loops).

EDUC 204

Student

Learning

Outcome

• 1) Demonstrate understanding of technology concepts, tools, systems and

operations to enhance teaching practice, professional productivity, and

student performance.

Lesson

Objectives
• Students will be able to modify a simple program using control structures

• Students will be able to create a program using control structures

Materials Lego EV3 robot; computer; Lego EV3 programming software; Lego EV3 box

Description To begin, pairs will be instructed on looping and how teachers can use looping to

teach basic computer programming concepts in the classroom. The instructor will

then demonstrate how to write a loop in the programming editor.

After that, the instructor will introduce the Lap Loop Challenge. For this activity,

pairs must modify their Lap Activity programs utilizing loops. Participants will

divide into pairs and will be given a pre-built Lego robot and a laptop with the

programming software. Pairs will then begin by modifying their programs from the

Lap Activity. Pairs will test their programs around their robots’ boxes. The

instructor will provide scaffolding as needed and remind the students that the

straight and turn commands need to be looped to complete one lap before playing a

sound.

Figure A.10. The lesson plan for Control Structures class two.

Figure A.11. A possible solution to the Lap Loop Challenge.

www.manaraa.com

267

Lesson Plan: Variables Class 1

SC State

Computer

Science

Standards

• Standard 5: Identify variables and compare the types of data stored as

variables.

EDUC 204

Student

Learning

Outcome

• 1) Demonstrate understanding of technology concepts, tools, systems and

operations to enhance teaching practice, professional productivity, and

student performance.

Lesson

Objectives
• Students will be able to predict the outcome of a program based on the

given variables.

• Students will be able to create a program using variables.

Materials Lego EV3 robot; computer; Lego EV3 programming software; blue tape; red tape

Procedures The class will begin with the instructor demonstrating variables and explaining how

teachers can use variables in their curricula. Participants will predict the outcomes

of programs based on example variables. The instructor will demonstrate how to

write a program with variables in the programming editor. The instructor will also

demonstrate to participants how the color sensor works. Participants will divide

into pairs and will be given a pre-built Lego robot and a laptop with the

programming software.

In the Red Light learning activity, pairs will have to program their robots to speed

up when the color sensor detects blue and stop when the color sensor detects red.

This programming will involve the switch and a speed variable. The instructor will

walk around the room and provide scaffolding as needed.

Figure A.12. The lesson plan for Variables class one.

Figure A.13. A schematic of the Red Light Activity.

www.manaraa.com

268

Lesson Plan: Variables Class 2

SC State

Computer

Science

Standards

• Standard 4: Develop a program to express an idea or address a problem.

• Standard 5: Identify variables and compare the types of data stored as

variables.

EDUC 204

Student

Learning

Outcome

• 1) Demonstrate understanding of technology concepts, tools, systems and

operations to enhance teaching practice, professional productivity, and

student performance.

Lesson

Objectives
• Students will be able to create a program using variables.

• Students will be able to modify a program using variables.

Materials Lego EV3 robot; computer; Lego EV3 programming software; maze made of black,

blue, and red tape

Procedures Participants will divide into pairs and will be given a pre-built Lego robot and a

laptop with the programming software. The Maze with Variables challenge will then

be introduced to students. For the challenge, pairs will be instructed to utilize the wait

block and the if/then statement block under the Flow Control heading as well as the

variable block and the math block under the Data Operations heading. These

functions will be reviewed.

For this challenge, the mazes utilized in the Maze challenge will be modified. Green

pieces of tape will be added to the mazes at points where the robots would need to

turn left. Red pieces of tape will be added for spots where the robots should turn right.

Every time the robots encounter a green line, they will turn left and execute the math

sequence of x + 1 to count the turn on the EV3’s screen. The robots should stop when

they detect the black tape to keep the robots from leaving the maze and stopping at

the finish. Pairs will complete this challenge when they successfully navigate their

robots to the end of the maze using programming which utilizes movement, control

structures, and variables.

Figure A.14. The lesson plan for Variables class two.

Figure A.15. A schematic for the Maze with Variables Challenge. This maze is derived

from the Coastal Robotics curriculum.

www.manaraa.com

269

Figure A.16. A possible solution for the Maze with Variables Challenge.

www.manaraa.com

270

APPENDIX B

PROGRAMMING COMPREHENSION ASSESSMENT

Basic Procedures

1. If one meter is equal to 2160o of turning on a wheel, which block set to number of

rotations will move the robot half a meter?

a.

b.

c.

d.

www.manaraa.com

271

e.

2. If (1 meter = 6 rotations = 2160o = 4.25 seconds) at 50% power, which of these

programs will move the robot exactly 7 meters?

a.

b.

c.

d.

www.manaraa.com

272

e.

3. Arrange these pieces so the resulting program is executable and moves the robot

forward for two seconds, backward for two rotations, and then forward for 720 degrees.

a. i, ii, iii, iv

b. ii, i, iv, iii

c. iii, ii, i, iv

d. iv, iii, i, ii

e. iv, i, iii, ii

4. How would you debug the block of programming below so that the robot moves

backward for three seconds at 100% power and then coasts?

www.manaraa.com

273

a. Update the power to 100%.

b. Update the time to 0.03.

c. Update brake at end to true.

d. Update the ports for the proper move steering motor.

e. All of these.

5. Which of these movement blocks would you add to build a program which moves the

robot forward until it encounters a black line, then it backs up?

a.

b.

www.manaraa.com

274

c.

d.

e.

Advanced Procedures

6. Where would a robot running this programming finish at the end of the program?

a. To the left of the starting position.

b. To the right of the starting position.

c. Directly in front of the starting position.

d. Directly behind the starting position.

e. At the exact same point as the starting position.

www.manaraa.com

275

7. Where would a robot running this programming finish at the end of the program?

a. To the left of the starting position.

b. To the right of the starting position.

c. Directly in front of the starting position.

d. Directly behind the starting position.

e. At the exact same point as the starting position.

8. Finish the program with the arranged segments to perform the action on the diagram.

a.

b.

c.

d.

5

4

www.manaraa.com

276

e.

9. Identify the program designed to perform the action in the diagram.

a.

b.

c.

d.

www.manaraa.com

277

e.

10. Your friend writes a program to move a car in a backward C shape, but the program

keeps moving in an S shape. Identify which segment is incorrectly programmed.

a. The first movement block.

b. The second movement block.

c. The third movement block.

d. The fourth movement block.

e. The fifth movement block.

Control Structures

11. Which of the following loop sequences will say a different word after ever four turns?

a.

www.manaraa.com

278

b.

c.

d.

e.

12. Which loop option simplifies this program?

a.

www.manaraa.com

279

b.

c.

d.

e.

13. Given the conditional if/then statement, what will happen if the robot detects black?

www.manaraa.com

280

a. It will turn left.

b. It will turn right.

c. It will continue moving straight until it detects either black, blue, or green.

d. It will continue straight for one rotation.

e. It will stop.

14. How many times will the following program say “hello” before ending?

www.manaraa.com

281

a. 2

b. 3

c. 5

d. 6

e. 12

15. Finish creating an algorithm so that the car moves in the pattern on the ground as

demonstrated in the graphic on the right.

a. Place before the first programming block inside the loop.

b. Place after the first programming block inside the loop.

c. Place after the last programming block inside the loop.

d. Swap each of the turn blocks within the algorithm.

www.manaraa.com

282

e. Change the loop count from 2 to 4.

Variables

16. Which algorithm counts each black line it encounters forever?

a.

b.

c.

d.

e.

www.manaraa.com

283

17. Given the pictured conditional if/then statement, what will happen each time the robot

detects a black line?

a. It will speed up 10 power up to a maximum of 100 power.

b. It will slow down 10 power up to a maximum of -100 power.

c. It will count by positive 10.

d. It will count by negative 10.

e. It will reverse.

www.manaraa.com

284

18. Your friend is building an algorithm which will increment a variable by one and turn

left at each green line encountered. Choose the string of programming in which the

variable increases by one at each green line encountered and displays the updated count

textually on the EV3’s display to complete this algorithm.

a.

b.

c.

d.

e.

www.manaraa.com

285

19. Given the variable, what will this program do?

a. Move at a power of 25 for 720o and then move at a power of 1 forever after that.

b. Move at a power of 25 for two rotations and then move 5 rotations at a power of 50.

c. Not move.

d. Move at a power of 50 for two rotations and then move at a power of 25 for 5

rotations.

e. Move at a power of 50 for 720 o and then slow down to a power of 1 for 5 rotations.

20. Create a program with a variable value of 25 which will subtract 15 power from the

motor for each line it encounters.

a. (I) 25; (II) Subtract; (III) 25

b. (I) 15; (II) Add; (III) 15

c. (I) 25; (II) Add; (III) 15

I

I
II

www.manaraa.com

286

d. (I) 15; (II) Subtract; (III) 25

e. (I) 25; (II) Subtract; (III) 1

www.manaraa.com

287

APPENDIX C

COMPREHENSION ASSESSMENT ALIGNMENT TABLES

Table C.1. Basic Procedures Assessment Question, Lesson Objective, and SC State Computer Science Standard Alignment

Assessment Question Lesson Objective Computer Science Standard

1. If one meter is equal to 2160o of turning on a

wheel, which block set to number of rotations

will move the robot half a meter?

Calculate odometry for a program Standard 4: Develop a program to

express an idea or address a

problem

2. If (1 meter = 6 rotations = 2160o = 4.25

seconds) at 50% power, which of these programs

will move the robot exactly 7 meters?

Use different ways to program a

robot to move a given distance

Standard 4: Develop a program to

express an idea or address a

problem

3. Arrange these pieces so the resulting program

is executable and moves the robot forward for

two seconds, backward for two rotations, and

then forward for 720 degrees.

Create a program for the robot

Standard 1: Recognize that many

daily tasks can be described as

step-by-step instructions (i.e.,

algorithms).

4. How would you debug the block of

programming below so that the robot moves

backward for three seconds at 100% power and

then coasts?

Test and debug a program Standard 4: Develop a program to

express an idea or address a

problem

5. Which of these movement blocks would you

add to build a program which moves the robot

forward until it encounters a black line, then it

backs up?

Create a program for the robot

Standard 1: Recognize that many

daily tasks can be described as

step-by-step instructions (i.e.,

algorithms).

www.manaraa.com

288

Table C.2. Advanced Procedures Assessment Question, Lesson Objective, and SC State Computer Science Standard Alignment

Assessment Question Lesson Objective Computer Science Standard

6. Where would a robot running this

programming finish at the end of the program?

Predict the outcome of a program Standard 1: Design, evaluate, and

modify simple algorithms (e.g.,

steps to make a sandwich; steps to

a popular dance; steps for sending

an email).

7. Where would a robot running this

programming finish at the end of the program?

Predict the outcome of a program Standard 1: Design, evaluate, and

modify simple algorithms (e.g.,

steps to make a sandwich; steps to

a popular dance; steps for sending

an email).

8. Finish the program with the arranged

segments to perform the action on the diagram.

Create a program to solve a

problem

Standard 3: Decompose problems

into subproblems and write code to

solve the subproblems (i.e., break

down a problem into smaller parts).

9. Identify the program designed to perform the

action in the diagram.

Predict the outcome of a program Standard 1: Design, evaluate, and

modify simple algorithms (e.g.,

steps to make a sandwich; steps to

a popular dance; steps for sending

an email).

10. Your friend writes a program to move a car

in a backward C shape, but the program keeps

moving in an S shape. Identify which segment is

incorrectly programmed.

Modify a simple program Standard 3: Decompose problems

into subproblems and write code to

solve the subproblems (i.e., break

down a problem into smaller parts).

www.manaraa.com

289

Table C.3. Control Structures Assessment Question, Lesson Objective, and SC State Computer Science Standard Alignment

Assessment Question Lesson Objective Computer Science Standard

11. Which of the following loop sequences will

say a different word after ever four turns?

Predict the outcome of an

algorithm that uses control

structures

Standard 2: Use and compare

simple coding control structures

(e.g., if-then, loops).

12. Which loop option simplifies this program?

Modify a simple algorithm using

control structures

Standard 2: Use and compare

simple coding control structures

(e.g., if-then, loops).

13. Given the conditional if/then statement, what

will happen if the robot detects black?

Predict the outcome of an

algorithm that uses control

structures

Standard 2: Use and compare

simple coding control structures

(e.g., if-then, loops).

14. How many times will the following program

say “hello” before ending?

Predict the outcome of an

algorithm that uses control

structures

Standard 2: Use and compare

simple coding control structures

(e.g., if-then, loops).

15. Finish creating an algorithm so that the car

moves in the pattern on the ground as

demonstrated in the graphic on the right.

Create an algorithm using control

structures

Standard 2: Use and compare

simple coding control structures

(e.g., if-then, loops).

www.manaraa.com

290

Table C.4. Variables Assessment Question, Lesson Objective, and SC State Computer Science Standard Alignment

Assessment Question Lesson Objective Computer Science Standard

16. Which algorithm counts each black line it

encounters forever?

Predict the outcome of an

algorithm that uses control

structures

Standard 2: Use and compare

simple coding control structures

(e.g., if-then, loops).

17. Given the pictured conditional if/then

statement, what will happen each time the robot

detects a black line?

Modify a simple algorithm using

control structures

Standard 2: Use and compare

simple coding control structures

(e.g., if-then, loops).

18. Your friend is building an algorithm which

will increment a variable by one and turn left at

each green line encountered. Choose the string of

programming in which the variable increases by

one at each green line encountered and displays

the updated count textually on the EV3’s display

to complete this algorithm.

Predict the outcome of an

algorithm that uses control

structures

Standard 2: Use and compare

simple coding control structures

(e.g., if-then, loops).

19. Given the variable, what will this program

do?

Predict the outcome of an

algorithm that uses control

structures

Standard 2: Use and compare

simple coding control structures

(e.g., if-then, loops).

20. Create a program with a variable value of 25

which will subtract 15 power from the motor for

each line it encounters.

Create an algorithm using control

structures

Standard 2: Use and compare

simple coding control structures

(e.g., if-then, loops).

www.manaraa.com

291

APPENDIX D

EXPERT REVIEWERS’ VALIDATION FEEDBACK

Reviewer 1

I already stole the whole thing. It progresses in difficulty quickly with Week 3 and 4

being pretty brutal. Teachers with foundational experience should be able to figure this

out. I will probably use these in group work for students – assigning each question to a

group and having students actually program each answer and run the bots to observe,

then report the results.

This is a great example of a test with variety – construct/deconstruct, code/debug,

matching, etc.

What kind of [redacted] helped write the K-8 CS standards?

For specifics goes:

• Overall the questions are succinct and unambiguous.

• My current students and even the [school redacted] CS kids might be confused by

the diagram on question #8.

• At first glance it appears that the bot goes up, like straight up. Students should

figure it out when analyzing the answers. For some reason, the diagrams for #9

and #10 are more clear to me – go left or right not up. The diagram for #15 is iffy

and I can see students trying to jump the bot.

www.manaraa.com

292

• The Lego screen capture for #11 is too small for this old guy. You may have to

break them up or put them landscape on a separate page. I have this problem often

– kids taking a test and complaining that they can’t see what’s in the boxes.

• For #18 “friend is building an algorithm which will add by one and turn left . . .” I

would suggest “increment by one” or “increment a variable by one” For some

reason, “add by one” doesn’t jive with me.

• #20 is a [redacted] and I’m not sure I can figure it out. I like the idea of the

answers corresponding to blank boxes in the code. I’m gonna steal that idea too.

Reviewer 2

My sincere apologies for not replying earlier. It’s been a very difficult semester for me.

Overall I really like this. I’ve been teaching an engineering course using the EV3s for the

past year (that also uses our mazes). These questions would have been very helpful for

my assessments.

I’ve attached my version of the assessment key that includes my comments. Please

double-check my work, I'm a bit exhausted this afternoon. I’ll also be around for the next

two weeks if you want to follow up with me on my comments.

A couple of last comments. When I started up my version of the EV3-G software I got

the attached message. It appears the LEGO Education is making a move to a newer

version of their programming language. Also for the last semester I’ve been working with

Python version of the software,

https://education.lego.com/en-us/support/mindstorms-ev3/python-for-ev3

www.manaraa.com

293

It’s not bad. Just something to think about before going all in with the lesson plans and

assessment instruments you’re developing.

• #1: I think the answer should be 3 rotations not 6 rotations. If 1 meter = 2160

then half a meter would be 1080°. If I then take 1080° and divide by 360° I get 3.

So I think item (a) is the correct answer.

• #9: The diagram implies that the robot performs a point turn at the junction (a

pivot turn would also work). This occurs when the steering parameter is set to +/-

100 or +/- 50 for a pivot turn. Most of the options include curve turns which will

cause the robot to move forward in an arcing path. I don’t think any of the options

are correct. Option (B) doesn’t work because it’s missing the final move forward

segment.

• #17: Up to a maximum of 100. So after 10 lines it won’t continue making the

robot move faster. The variable value will still increase, but the actual speed value

in the final green block will max out at 100.

• #18: Not that affects the answer, but there is an extra floating bubble that says

“Port: 3” on the image. It may be confusing.

• #19: The first Move Steering block is set to a power of 25 not 50.

www.manaraa.com

294

APPENDIX E

PROGRAMMING MOTIVATION SURVEY

Demographic Information

Please select the choice which best describes you.

Age:

0 – 100

Gender:

Male – Female

Classification:

Freshman – Sophomore – Junior – Senior

Education major concentration:

Early Childhood – Elementary – Middle Level – Special Education – Physical Education

I would rate my technology comfort level as:

Low – Medium – High

I have prior programming experience.

Yes – No

I have had prior programming instruction.

Yes – No

I have prior experience programming a robot.

Yes – No

I have had prior robotics instruction.

Yes – No

Programming Motivation

Please indicate your level of agreement with each of the following statements:

1 (strongly disagree), 2 (disagree), 3 (neutral), 4 (agree), 5 (strongly agree)

1. Programming is relevant to my life.

1 – 2 – 3 – 4 – 5

2. Teaching programming would benefit my students.

1 – 2 – 3 – 4 – 5

3. Learning programming is interesting.

1 – 2 – 3 – 4 – 5

4. I am confident in learning programming

1 – 2 – 3 – 4 – 5

5. I put enough effort into learning programming.

1 – 2 – 3 – 4 – 5

6. I use various strategies to learn programming well.

1 – 2 – 3 – 4 – 5

7. Learning programming will help me get a good job.

1 – 2 – 3 – 4 – 5

8. Programming activities will enhance my students’ learning

1 – 2 – 3 – 4 – 5

9. I am confident I will do well on programming tests.

1 – 2 – 3 – 4 – 5

10. Knowing programming will give me a career advantage.

1 – 2 – 3 – 4 – 5

www.manaraa.com

295

11. I spend a lot of time learning programming.

1 – 2 – 3 – 4 – 5

12. Learning programming makes my life more meaningful.

1 – 2 – 3 – 4 – 5

13. Understanding programming will benefit me in my career.

1 – 2 – 3 – 4 – 5

14. I am confident I will do well on programming activities.

1 – 2 – 3 – 4 – 5

15. I believe I can master programming knowledge and skills.

1 – 2 – 3 – 4 – 5

16. I concentrate fully on what I do when I work on programming activities.

1 – 2 – 3 – 4 – 5

17. I am curious about advancing my programming skills.

1 – 2 – 3 – 4 – 5

18. I plan to incorporate programming into my teaching.

1 – 2 – 3 – 4 – 5

19. I enjoy learning programming.

1 – 2 – 3 – 4 – 5

20. I look for additional resources to improve my skills when learning programming.

1 – 2 – 3 – 4 – 5

21. I enjoy teaching programming to others

1 – 2 – 3 – 4 – 5

22. I can teach programming in my future courses

1 – 2 – 3 – 4 – 5

23. My career will involve programming.

1 – 2 – 3 – 4 – 5

24. I can write advanced programs

1 – 2 – 3 – 4 – 5

25. I will use programming problem-solving skills in my career.

1 – 2 – 3 – 4 – 5

Figure E.1. The Programming Motivation Survey adapted from the Science Motivation

Questionnaire II © 2011 Shawn M. Glynn.

www.manaraa.com

296

APPENDIX F

ADAPTATION OF SMQ-II

SMQ-II Programming Motivation Survey

Intrinsic Motivation

Learning science is interesting. Learning programming is interesting.

I am curious about discoveries in science. I am curious about advancing my programming skills.*

The science I learn is relevant to my life. Programming is relevant to my life.

Learning science makes my life more meaningful. Learning programming makes my life more meaningful.

I enjoy learning science. I enjoy learning programming.

Career Motivation

Learning science will help me get a good job. Learning programming will help me get a good job.

Understanding science will benefit me in my career. Understanding programming will benefit me in my

career.

Knowing science will give me a career advantage. Knowing programming will give me a career advantage.

I will use science problem-solving skills in my career. I will use programming problem-solving skills in my

career.

My career will involve science. My career will involve programming.

Self-Determination

I study hard to learn science. I concentrate fully on what I do when I work on

programming activities.*

I prepare well for science tests and labs. I look for additional resources to improve my skills

when learning programming.*

I put enough effort into learning science. I put enough effort into learning programming.

I spend a lot of time learning science. I spend a lot of time learning programming.

I use strategies to learn science well I use various strategies to learn programming well.

Self-Efficacy

I believe I can earn a grade of “A” in science. I am confident in learning programming.*

I am confident I will do well on science tests. I am confident I will do well on programming tests.

I believe I can master science knowledge and skills. I believe I can master programming knowledge and

skills.

I am sure I can understand science I can write advanced programs.*

I am confident I will do well on science labs and

projects.

I am confident I will do well on programming activities.

Grade Motivation Motivation to Integrate Programming into Teaching*

Scoring high on science tests and labs matters to me. I plan to incorporate programming into my teaching.*

It is important that I get an “A” in science. I can teach programming in my future courses. *

I think about the grade I will get in science. I enjoy teaching programming to others. *

Getting a good science grade is important to me. Programming activities will enhance my students’

learning. *

I like to do better than other students on science tests. Teaching programming would benefit my students. *

Figure F.1. The adaptations of the Programming Motivation Survey statements and

subscales from the Science Motivation Questionnaire II © 2011 Shawn M. Glynn.

Note. * Indicates replacement.

www.manaraa.com

297

APPENDIX G

INDIVIDUAL INTERVIEW PROTOCOL

Introduction

Hello (interview participant),

Thank you for taking time to sit down with me today. As you know, my name is

Mr. Fegely. I am a doctoral candidate in the Education Department at the University of

South Carolina. I am conducting a research study as part of the requirements of my

degree in Curriculum and Instruction - Educational Technology, and I would like to

invite you to participate.

I am studying programming comprehension and motivation among preservice

teachers. If you decide to participate, you will participate in an individual interview

about programming motivation. In particular, we will discuss your experiences with the

programming activities performed in class over the past few weeks. You do not have to

answer any questions that you do not wish to answer. The interview will take place at in

this classroom and should last about 30 minutes. The session will be audio and video

recorded so that I can accurately transcribe what is discussed. The footage will only be

reviewed by members of the research team and destroyed upon completion of the study.

Participation is confidential. Study information will be kept in a secure location.

The results of the study may be published or presented at professional meetings, but your

identity will not be revealed. Remember, participation, non-participation or withdrawal

will not affect your grades in any way.

www.manaraa.com

298

I will be happy to answer any questions you have about the study now or later by

phone or email. You may contact me at extension [redacted] or [redacted].

Thank you for your consideration. If you would like to participate, I will begin

with the instructions for how this interview will operate.

I have prepared questions about your experiences with programming. Please

answer them openly and honestly with substantial depth. Remember, there are no wrong

answers. Please feel free to present your perspective even if you do not believe it is

shared by myself or others. I have twelve main questions for you. Once I present the

question, feel free to share your perspective and experiences. As the interviewer, I may

interject to ask qualifying questions, but mainly I will be listening to your responses. Let

us begin now.

Questions

1. What aspects, if anything, interested you in the programming activities?

• Prompt: Can you explain what you found interesting about those programming

activities?

2. Tell me about your experiences with the programming activities in the course.

• Prompt: Which one(s) was(were) most enjoyable? Explain.

• Prompt: Which one(s) was(were) least enjoyable? Explain.

3. How do you think learning programming will influence your career after graduation?

• Prompt: Can you give me an example of how you feel learning programming will

influence your career after graduation?

4. In what ways do you believe learning programming would be valuable to you as a

teacher?

www.manaraa.com

299

• Prompt: How has your opinion changed since the beginning of this course?

5. Can you tell me about a time when you felt learning programming was hard?

• Prompt: Why did you feel this way?

• Prompt: How did you overcome that situation?

6. Tell me about a time you put in extra effort over the past four weeks to research

additional resources to help you during the programming activities.

• Prompt: How did you make the decision to seek additional resources?

7. Tell me about your current state of programming knowledge and skills?

• Prompt: How do you think it has changed since the beginning of this course?

8. What are your feelings on learning even more advanced programming?

9. Where do you position yourself in the continuum of adding or not adding

programming activities to your classes? Why?

10. Tell me about your thoughts on how programming activities would fit into the grade

level and subject area you will teach?

• Prompt: Can you please give me an example programming activity for the grade

or subject area you will be teaching.

11. Which programming activities do you feel were effective in helping you learn

programming?

• Prompt: What suggestions would you make to improve the programming

activities in this course?

12. Do you have any questions for me?

 That concludes our interview. I will share a copy of the transcript of this interview

with you via email in the coming days. Please let me know if there is anything in the

www.manaraa.com

300

transcript which you feel does not properly communicate what you were trying to say.

Remember, you can opt out at any time. Thank you for the time and effort you have put

into answering these questions.

www.manaraa.com

301

APPENDIX H

UNIVERSITY IRB APPROVAL

OFFICE OF RESEARCH COMPLIANCE

INSTITUTIONAL REVIEW BOARD FOR HUMAN RESEARCH

APPROVAL LETTER for EXEMPT REVIEW

Alex Fegely

[Redacted]

Myrtle Beach, SC 29579 USA

Re: Pro00095457

Dear Mr. Alex Fegely:

This is to certify that the research study Learning Programming Through Robots: A Mixed-Methods Study on the

Effects of Educational Robotics on Programming Comprehension and Motivation of Preservice Teachers was

www.manaraa.com

302

reviewed in accordance with 45 CFR 46.104(d)(1), the study received an exemption from Human Research Subject

Regulations on 12/18/2019. No further action or Institutional Review Board (IRB) oversight is required, as long as the

study remains the same. However, the Principal Investigator must inform the Office of Research Compliance of any

changes in procedures involving human subjects. Changes to the current research study could result in a

reclassification of the study and further review by the IRB.

Because this study was determined to be exempt from further IRB oversight, consent document(s), if applicable, are

not stamped with an expiration date.

All research related records are to be retained for at least three (3) years after termination of the study.

The Office of Research Compliance is an administrative office that supports the University of South Carolina

Institutional Review Board (USC IRB). If you have questions, contact Lisa Johnson at lisaj@mailbox.sc.edu or (803)

777-6670.

Sincerely,

Lisa M. Johnson

ORC Assistant Director and IRB Manager

www.manaraa.com

303

APPENDIX I

RESEARCH SITE IRB APPROVAL

November 20, 2019

Alex Fegely

Education

[redacted]

[redacted]

RE: Learning Programming Through Robots

Alex,

It has been determined that your protocol #2020.97 is approved as EXEMPT by the [redacted]

University Institutional Review Board (IRB) under the Federal Policy for the Protection of Human

Research Subjects categories #1 & 2.

This approval is good for one calendar year commencing with the date of approval and

concludes on 11/19/2020). If your work continues beyond this date it will be necessary seek a

continuation from the IRB. If your work is concluded before this date, please so inform the IRB.

Approval of this protocol does not provide permission or consent for faculty, staff or students

to use university communication channels for contacting or obtaining information from

research subjects or participants. Faculty, staff and students are responsible for obtaining

appropriate permission to use university communications to contact research participants. For

use of university e-mail to groups such as all faculty/staff, all students or other large groups

www.manaraa.com

304

on campus permission must be first obtained by the researcher from the Office of the Provost

after the research protocol has been approved by the IRB. Please allow at least one week to

receive approval.

Please note, it is the responsibility of the Principal Investigator to report immediately to the IRB

any changes in procedures involving human subjects and any unexpected risks to human

subjects, any detrimental effects to the rights or welfare of any human subjects participating in

the project, giving names of persons, dates of occurrences, details of harmful effects, and any

remedial actions. Such changes may affect the status of your approved research.

Be advised that study materials and documentation, including signed informed consent forms,

must be retained for at least three (3) years after termination of the research and shall be

accessible for purposes of audit.

If you have any questions concerning this Review, please contact [redacted], IRB Coordinator, at

[redacted] or extension 2978.

Thank you,

[redacted]

Director, Office of Sponsored Programs and Research Services

IRB Administrator

www.manaraa.com

305

APPENDIX J

CONSENT FORMS

Informed Consent for Human Subject Research Participation

Introduction

My name is Alex Fegely and I am a faculty member [redacted]. I would like to invite you

to take part in my research study entitled, Learning Programming Through Robots. You

are free to talk with someone you trust about your participation in this research and may

take time to reflect on whether you wish to participate or not. If you have any questions, I

will answer them now or at any time during the study.

Purpose

The purpose of this research study is to evaluate the effects educational robotics have on

programming comprehension and motivation of preservice teachers.

Procedures

During this research study, you will take motivation comprehension assessments,

programming motivation surveys, and possibly be asked questions as part of an

individual interview.

Duration

For this research study, your participation will be required for 5 weeks of in-class time.

Rights

You do not have to agree to participate in this research study. If you do choose to

participate, you may choose not to at any time once the study begins. There is no penalty

for not participating or withdrawing from the study at any time. If you are a [redacted]

student, your decision to participate or not will have no affect your grade.

Risks

During this research study, no risks or discomforts are anticipated.

Benefits

By agreeing to participate in this research study you may help a better understanding of

programming and its applications with educational robotics.

www.manaraa.com

306

Confidentiality

Unless you provide consent to the contrary, the confidentiality of your participation in

this research study, your responses or any individual results will be maintained by the PI

and all members of the research team.

Note that confidentiality will only be violated when required by law or the ethical

guidelines of the American Psychological Association. This usually includes, but may not

be limited to, situations when your responses indicate that you, or another clearly

identified individual, is at risk of imminent harm or situations in which faculty are

mandated reporters, such as instances of child abuse or issues covered under Title IX

regulations. For more information about Title IX, please see the University’s webpage at:

[redacted].

Sharing the Results

As the Principal Investigator on this research study, I plan to share the results of this

study with my dissertation committee and by publishing in peer-reviewed journals and

presenting at academic conferences. None of the material published or presented will

have any identifying information.

Contacts

If you have any questions about this research study, please feel free to contact me by

phone [redacted] or [redacted].

The Institutional Review Board (IRB) under the Office of Sponsored Programs and

Research Services is responsible for the oversight of all human subject research

conducted at [redacted]. If you have any questions about your rights as a research

participant before, during or after the research study, you may contact this office by

calling [redacted]or emailing OSPRS@[redacted].edu.

**

mailto:OSPRS@coastal.edu

www.manaraa.com

307

Consent

I have read this form and have been able to ask questions of the PI and/or discuss my

participation with someone I trust. I understand that I can ask additional questions at any

time during this research study and am free to withdraw from participation at any time.

I agree to take part in this research study.

I agree to allow my name or other identifying information to be included in

reports, publications and/or presentations resulting from this research study.

I DO NOT agree to allow my name or other identifying information to be

included in reports, publications and/or presentations resulting from this research

study.

Participant’s signature:

Date:

Photography, Video or Audio Recording Authorization

I hereby release, discharge and agree to save harmless [redacted], its successors, assigns,

officers, employees or agents, any person(s) or corporation(s) for whom it might be

acting, and any firm publishing and/or distributing any photograph, video footage or

audio recording produced as part of this research, in whole or in part, as a finished

product, from and against any liability as a result of any distortion, blurring, alteration,

visual or auditory illusion, or use in composite form, either intentionally or otherwise,

that may occur or be produced in the recording, processing, reproduction, publication or

distribution of any photograph, videotape, audiotape or interview, even should the same

subject me or my to ridicule, scandal, reproach, scorn or indignity. I hereby agree that the

photographs, video footage and audio recordings may be used under the conditions stated

herein without blurring my identifying characteristics.

If you have any questions about this research study, please feel free to contact me by

phone [redacted] or [redacted].

The Institutional Review Board (IRB) under the Office of Sponsored Programs and

Research Services is responsible for the oversight of all human subject research

www.manaraa.com

308

conducted at [redacted]. If you have any questions about your rights as a research

participant before, during or after the research study, you may contact this office by

calling [redacted] or emailing OSPRS@[redacted].edu.

I have read this authorization and have been able to ask questions of the PI and/or discuss

my participation with someone I trust. I understand that I can ask additional questions at

any time during this research study and am free to withdraw from participation at any

time.

Participant’s signature:

Date:

mailto:OSPRS@coastal.edu

	Learning Programming Through Robots: A Mixed-Methods Study on the Effects of Educational Robotics on Programming Comprehension and Motivation of Preservice Teachers
	Recommended Citation

	tmp.1614743892.pdf.QgchG

